GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    CAMBRIDGE UNIV PRESS
    In:  EPIC3Antarctic Science, CAMBRIDGE UNIV PRESS, 25(6), pp. 741-751, ISSN: 0954-1020
    Publication Date: 2019-07-16
    Description: We determined the composition and structure of late summer eukaryotic protist assemblages along a west–east transect in the Amundsen Sea. We used state-of-the-art molecular approaches, such as automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing, combined with pigment measurements via high performance liquid chromatography (HPLC) to study the protist assemblage. We found characteristic offshore and inshore communities. In general, total chlorophyll a and microeukaryotic contribution were higher in inshore samples. Diatoms were the dominant group across the entire area, of which Eucampia sp. and Pseudo-nitzschia sp. were dominant inshore and Chaetoceros sp. was dominant offshore. At the most eastern station, the assemblage was dominated by Phaeocystis sp. Under the ice, ciliates showed their highest and haptophytes their lowest abundance. This study delivers a taxon detailed overview of the eukaryotic protist composition in the Amundsen Sea during the summer 2010.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3International Conference of Sensors for Aquaculture and Environmental Monitoring, Bremerhaven, Germany, 2018-11-07-2018-11-08
    Publication Date: 2018-11-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-01
    Description: Next‐generation sequencing is a common method for analysing microbial community diversity and composition. Configuring an appropriate sequence processing strategy within the variety of tools and methods is a nontrivial task and can considerably influence the resulting community characteristics. We analysed the V4 region of 18S rRNA gene sequences of marine samples by 454‐pyrosequencing. Along this process, we generated several data sets with QIIME, mothur, and a custom‐made pipeline based on DNAStar and the phylogenetic tree‐based PhyloAssigner. For all processing strategies, default parameter settings and punctual variations were used. Our results revealed strong differences in total number of operational taxonomic units (OTUs), indicating that sequence preprocessing and clustering had a major impact on protist diversity estimates. However, diversity estimates of the abundant biosphere (abundance of ≥1%) were reproducible for all conducted processing pipeline versions. A qualitative comparison of diatom genera emphasized strong differences between the pipelines in which phylogenetic placement of sequences came closest to light microscopy‐based diatom identification. We conclude that diversity studies using different sequence processing strategies are comparable if the focus is on higher taxonomic levels, and if abundance thresholds are used to filter out OTUs of the rare biosphere.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-09
    Description: Protists (microbial eukaryotes) are diverse, major components of marine ecosystems, and are fundamental to ecosystem services. In the last 10 years, molecular studies have highlighted substantial novel diversity in marine systems including sequences with no taxonomic context. At the same time, many known protists remain without a DNA identity. Since the majority of pelagic protists are too small to identify by light microscopy, most are neither comprehensively or regularly taken into account, particularly in Long-term Ecological Research Sites. This potentially undermines the quality of research and the accuracy of predictions about biological species shifts in a changing environment. The ICES Working Group for Phytoplankton and Microbial Ecology conducted a questionnaire survey in 2013–2014 on methods and identification of protists using molecular methods plus a literature review of protist molecular diversity studies. The results revealed an increased use of high-throughput sequencing methods and a recognition that sequence data enhance the overall datasets on protist species composition. However, we found only a few long-term molecular studies and noticed a lack of integration between microscopic and molecular methods. Here, we discuss and put forward recommendations to improve and make molecular methods more accessible to Long-term Ecological Research Site investigators.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-23
    Description: The Arctic Ocean plays a key role in regulating the global climate, while being highly sensitive to climate change. Temperature in the Arctic increases faster than the global average, causing a loss of multiyear sea-ice and affecting marine ecosystem structure and functioning. As a result, Arctic primary production and biogeochemical cycling are changing. Here, we investigated inter-annual changes in the concentrations of particulate and dissolved organic carbon (POC, DOC) together with biological drivers, such as phyto- and bacterioplankton abundance in the Fram Strait, the Atlantic gateway to the Central Arctic Ocean. Data have been collected in summer at the Long-Term Ecological Research observatory HAUSGARTEN during eight cruises from 2009 to 2017. Our results suggest that the dynamic physical system of the Fram Strait induces strong heterogeneity of the ecosystem that displays considerable intra-seasonal as well as inter-annual variability. Over the observational period, DOC concentrations were significantly negatively related to temperature and salinity, suggesting that outflow of Central Arctic waters carrying a high DOC load is the main control of DOC concentration in this region. POC concentration was not linked to temperature or salinity but tightly related to phytoplankton biomass as estimated from chlorophyll-a concentrations (Chl-a). For the years 2009–2017, no temporal trends in the depth-integrated (0–100 m) amounts of DOC and Chl-a were observed. In contrast, depth-integrated (0–100 m) amounts of POC, as well as the ratio [POC]:[TOC], decreased significantly over time. This suggests a higher partitioning of organic carbon into the dissolved phase. Potential causes and consequences of the observed changes in organic carbon stocks for food-web structure and CO2 sequestration are discussed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Expeditionsprogramm Polarstern, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 39
    Publication Date: 2019-07-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Expedition program , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-04
    Description: Global warming is rapidly altering physicochemical attributes of Arctic waters. These changes are predicted to alter microbial networks, potentially perturbing wider community functions including parasite infections and saprotrophic recycling of biogeochemical compounds. Specifically, the interaction between autotrophic phytoplankton and heterotrophic fungi e.g. chytrids (fungi with swimming tails) requires further analysis. Here, we investigate the diversity and distribution patterns of fungi in relation to abiotic variables during one record sea ice minimum in 2012 and explore co-occurrence of chytrids with diatoms, key primary producers in these changing environments. We show that chytrid fungi are primarily encountered at sites influenced by sea ice melt. Furthermore, chytrid representation positively correlates with sea ice-associated diatoms such as Fragilariopsis or Nitzschia. Our findings identify a potential future scenario where chytrid representation within these communities increases as a consequence of ice retreat, further altering community structure through perturbation of parasitic or saprotrophic interaction networks
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-22
    Description: In May 2016, the remote-controlledAutomatedFiltration System forMarine Microbes (AUTOFIM) was implemented in parallel to the Long Term Ecological Research (LTER) observatory Helgoland Roads in the German Bight. We collected samples for characterization of dynamics within the eukaryotic microbial communities at the end of a phytoplankton bloom via 18S meta-barcoding. Understanding consequences of environmental change for key marine ecosystem processes, such as phytoplankton bloom dynamics requires information on biodiversity and species occurrences with adequate temporal and taxonomic resolution via time series observations. Sampling automation and molecular high throughput methods can serve these needs by improving the resolution of current conventional marine time series observations. A technical evaluation based on an investigation of eukaryotic microbes using the partial 18S rRNA gene suggests that automated filtration with the AUTOFIM device and preservation of the plankton samples leads to highly similar 18S community profiles, compared to manual filtration and snap freezing. The molecular data were correlated with conventional microscopic counts. Overall, we observed substantial change in the eukaryotic microbial community structure during the observation period. A simultaneous decline of diatom and ciliate sequences succeeded a peak ofMiracula helgolandica, suggesting a potential impact of these oomycete parasites on diatom bloom dynamics and phenology in the North Sea. As oomycetes are not routinely counted at Helgoland Roads LTER, our findings illustrate the benefits of combining automated filtration with metabarcodingto augment classical time series observations, particularly for taxa currently neglected due to methodological constraints.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-11-09
    Description: Time-series observations provide an essential baseline to identify biological responses to environmental fluctuations, and to distinguish natural variability from human impact. Here, we describe for the first time year-round microbial and oceanographic dynamics in the partially ice-covered Fram Strait (Arctic Ocean) using autonomous samplers deployed as part of the infrastructure program FRAM, allowing unprecedented insights into the marine microbial ecology of the polar night. Bacterial communities showed a strong seasonal signal, especially in the West Spitsbergen Current. Here, distinct temporal succession of phytoplankton and bacterial clades occurred, including covariance of the magnetotactic bacterium Magnetospira with daylight hours. Summer featured weekly variability in blooming taxa, including the flavobacterial genera Formosa and Polaribacter succeeding peaks of the diatoms Thalassiosira and Grammonema. The Bacteroidetes peak in summer was followed by dominance of SAR11 in fall and Nitrosopumilus in winter, suggesting timely controlled ecological roles. Bacterial diversity was highest in winter, featuring elevated abundances of Planctomycetes and Nitrospinia as well as the heterotrophic eukaryote taxa Syndiniales and Radiolaria. Late winter was characterized by increasing proportions of e.g. Dadabacteria before the onset of the productive season. In the ice-covered East Greenland Current (Arctic Ocean outflow), bacterial community structure showed less seasonality. Here, bacterial diversity decreased in response to ice cover dynamics and nitrate availability, underlining that changing ice and light regimes likely impact plankton diversity and biogeochemical processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...