GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 431 (2004), S. 834-838 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Progressive oxygenation of the Earth's early biosphere is thought to have resulted in increased sulphide oxidation during continental weathering, leading to a corresponding increase in marine sulphate concentration. Accurate reconstruction of marine sulphate reservoir size is therefore ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 429 (2004), S. 359-360 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] For the first three-and-a-half billion years of Earth's history, the Sun burned only about 70–90% as brightly as it does today. A famous paradox of ancient climate demands that we reconcile the persistence of a life-sustaining liquid ocean with these less-warming rays from a faint ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 448 (2007), S. 1005-1006 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] ...The oxygen in Earth's atmosphere is almost exclusively a product of photosynthesis. The transition from an early, virtually oxygen-free world to an irreversibly oxygenated one is linked to the first appearance and proliferation of photosynthesizing cyanobacteria. But whereas the first notable ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Here, we present results from sediments collected in the Argentine Basin, a non-steady state depositional marine system characterized by abundant oxidized iron within methane-rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide-depleted sediments is best explained by a microbially mediated process—implicating anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) as the most likely major mechanism. Although important in many modern marine environments, iron-driven AOM may not consume similar amounts of methane compared with sulfate-dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate-lean marine settings. Fe-AOM might have been particularly relevant in the Archean ocean, 〉2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 510–526, doi:10.1002/2014PA002741.
    Description: Global warming lowers the solubility of gases in the ocean and drives an enhanced hydrological cycle with increased nutrient loads delivered to the oceans, leading to increases in organic production, the degradation of which causes a further decrease in dissolved oxygen. In extreme cases in the geological past, this trajectory has led to catastrophic marine oxygen depletion during the so-called oceanic anoxic events (OAEs). How the water column oscillated between generally oxic conditions and local/global anoxia remains a challenging question, exacerbated by a lack of sensitive redox proxies, especially for the suboxic window. To address this problem, we use bulk carbonate I/Ca to reconstruct subtle redox changes in the upper ocean water column at seven sites recording the Cretaceous OAE 2. In general, I/Ca ratios were relatively low preceding and during the OAE interval, indicating deep suboxic or anoxic waters exchanging directly with near-surface waters. However, individual sites display a wide range of initial values and excursions in I/Ca through the OAE interval, reflecting the importance of local controls and suggesting a high spatial variability in redox state. Both I/Ca and an Earth System Model suggest that the northeast proto-Atlantic had notably higher oxygen levels in the upper water column than the rest of the North Atlantic, indicating that anoxia was not global during OAE 2 and that important regional differences in redox conditions existed. A lack of correlation with calcium, lithium, and carbon isotope records suggests that neither enhanced global weathering nor carbon burial was a dominant control on the I/Ca proxy during OAE 2.
    Description: Z.L. thanks NSF OCE 1232620. J.D.O. is supported by an Agouron Postdoctoral Fellowship. T.W.L. acknowledges support from the NSF-EAR and NASA-NAI. A.R. thanks the support of NERC via NE/J01043X/1.
    Description: 2015-11-13
    Keywords: I/Ca ; OAE 2 ; Oxygenation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth-Science Reviews 172 (2017): 140-177, doi:10.1016/j.earscirev.2017.06.012.
    Description: Iron formations (IF) represent an iron-rich rock type that typifies many Archaean and Proterozoic supracrustal successions and are chemical archives of Precambrian seawater chemistry and postdepositional iron cycling. Given that IF accumulated on the seafloor for over two billion years of Earth’s early history, changes in their chemical, mineralogical, and isotopic compositions offer a unique glimpse into environmental changes that took place on the evolving Earth. Perhaps one of the most significant events was the transition from an anoxic planet to one where oxygen was persistently present within the marine water column and atmosphere. Linked to this progressive global oxygenation was the evolution of aerobic microbial metabolisms that fundamentally influenced continental weathering processes, the supply of nutrients to the oceans, and, ultimately, diversification of the biosphere and complex life forms. Many of the key recent innovations in understanding IF genesis are linked to geobiology, since biologically assisted Fe(II) oxidation, either directly through photoferrotrophy, or indirectly through oxygenic photosynthesis, provides a process for IF deposition from mineral precursors. The abundance and isotope composition of Fe(II)-bearing minerals in IF additionally suggests microbial Fe(III) reduction, a metabolism that is deeply rooted in the Archaea and Bacteria. Linkages among geobiology, hydrothermal systems, and deposition of IF have been traditionally overlooked, but now form a coherent model for this unique rock type. This paper reviews the defining features of IF and their distribution through the Neoarchaean and Palaeoproterozoic. This paper is an update of previous reviews by Bekker et al. (2010, 2014) that will improve the quantitative framework we use to interpret IF deposition. In this work, we also discuss how recent discoveries have provided new insights into the processes underpinning the global rise in atmospheric oxygen and the geochemical evolution of the oceans.
    Description: KOK, TJW, RH, CAP and AB would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for its financial support. LJR gratefully acknowledges the support of a Vanier Canada Graduate Scholarship. CMJ, DSH, NJP and TWL acknowledge support from the NASA Astrobiology Institute. SVL acknowledges support from the European Institute for Marine Studies (LabexMER, ANR-10-LABX-19). HT and PBHO thank ASSMANG Ltd for providing research funding.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geobiology 15 (2017): 211–224, doi:10.1111/gbi.12222.
    Description: Records of the Ediacaran carbon cycle (635 to 541 million years ago) include the Shuram excursion (SE), the largest negative carbonate-carbon isotope excursion in Earth history (down to -12 ‰). The nature of this excursion remains enigmatic given the difficulties of interpreting a perceived extreme global decrease in the δ13C of seawater dissolved inorganic carbon (DIC). Here, we present carbonate and organic carbon isotope (δ13Ccarb and δ13Corg) records from the Ediacaran Doushantuo Formation along a proximal-to-distal transect across the Yangtze Platform of South China as a test of the spatial variation of the SE. Contrary to expectations, our results show that the magnitude and morphology of this excursion and its relationship with coexisting δ13Corg are highly heterogeneous across the platform. Integrated geochemical, mineralogical, petrographic, and stratigraphic evidence indicates that the SE is a primary marine signature. Data compilations demonstrate that the SE was also accompanied globally by parallel negative shifts of δ34S of carbonate-associated sulfate (CAS) and increased 87Sr/86Sr ratio and coastal CAS concentration, suggesting elevated continental weathering and coastal marine sulfate concentration during the SE. In light of these observations, we propose a heterogeneous oxidation model to explain the high spatial heterogeneity of the SE and coexisting δ13Corg records of the Doushantuo, with likely relevance to the SE in other regions. In this model, we infer continued marine redox stratification through the SE but with increased availability of oxidants (e.g., O2 and sulfate) limited to marginal near-surface marine environments. Oxidation of limited spatiotemporal extent provides a mechanism to drive heterogeneous oxidation of subsurface reduced carbon mostly in shelf areas. Regardless of the mechanism driving the SE, future models must consider the evidence for spatial heterogeneity in δ13C presented in this study.
    Description: We thank the National Key Basic Research Program of China (Grant 2013CB955704) and the State Key R&D project of China (Grant 2016YFA060104) as well as the NSF-ELT program and the NASA Astrobiology Institute (TWL) for funding.
    Keywords: Ediacaran carbon cycle ; Doushantuo Formation ; Shuram excursion ; Spatial heterogeneity, ; Surface-ocean oxygenation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in American Journal of Science 318 (2018): 527-556, doi:10.2475/05.2018.04.
    Description: Iron speciation and trace metal proxies are commonly applied together in efforts to identify anoxic settings marked by the presence of free sulfide (euxinia) or dissolved iron (ferruginous) in the water column. Here, we use a literature compilation from modern localities to provide a new empirical evaluation of coupled Fe speciation and Mo concentrations as a proxy for pore water sulfide accumulation at non-euxinic localities. We also present new Fe speciation, Mo concentration, and S isotope data from the Friends of Anoxic Mud (FOAM) site in Long Island Sound, which is marked by pore water sulfide accumulation of up to 3 mM beneath oxygen-containing bottom waters. For the operationally defined Fe speciation scheme, ‘highly reactive’ Fe (FeHR) is the sum of pyritized Fe (Fepy) and Fe dominantly present in oxide phases that is available to react with pore water sulfide to form pyrite. Observations from FOAM and elsewhere confirm that Fepy/FeHR from non-euxinic sites is a generally reliable indicator of pore fluid redox, particularly the presence of pore water sulfide. Molybdenum (Mo) concentration data for anoxic continental margin sediments underlying oxic waters but with sulfidic pore fluids typically show authigenic Mo enrichments (2-25 ppm) that are elevated relative to the upper crust (1-2 ppm). However, compilations of Mo concentrations comparing sediments with and without sulfidic pore fluids underlying oxic and low oxygen (non-euxinic) water columns expose non-unique ranges for each, exposing false positives and false negatives. False positives are most frequently found in sediments from low oxygen water columns (for example, Peru Margin), where Mo concentration ranges can also overlap with values commonly found in modern euxinic settings. FOAM represents an example of a false negative, where, despite elevated pore water sulfide concentrations and evidence for active Fe and Mn redox cycling in FOAM sediments, sedimentary Mo concentrations show a homogenous vertical profile across 50 cm depth at 1-2 ppm. A diagenetic model for Mo provides evidence that muted authigenic enrichments are derived from elevated sedimentation rates. Consideration of a range of additional parameters, most prominently pore water Mo concentration, can replicate the ranges of most sedimentary Mo concentrations observed in modern non-euxinic settings. Together, the modern Mo and Fe data compilations and diagenetic model provide a framework for identifying paleo-pore water sulfide accumulation in ancient settings and linked processes regulating seawater Mo and sulfate concentrations and delivery to sediments. Among other utilities, identifying ancient accumulation of sulfide in pore waters, particularly beneath oxic bottom waters, constrains the likelihood that those settings could have hosted organisms and ecosystems with thiotrophy at their foundations.
    Description: DSH, TWL, NJP, and CRT acknowledge support from the NASA Astrobiology Institute under Cooperative Agreement No. NNA15BB03A issued through the Science Mission Directorate. Financial support was provided to NR and TWL by NSF-OCE and an appointment to the NASA Postdoctoral Program, as well as to BCG via a postdoctoral fellowship from the Agouron Institute. DSH was supported by a WHOI postdoctoral fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Chemical Geology 457 (2017): 95-106, doi:10.1016/j.chemgeo.2017.03.016.
    Description: Carbonate-associated iodine (I/Ca) has been used as a proxy of local, upper-ocean redox conditions, and has successfully demonstrated highly dynamic spatial and temporal patterns across different time scales of Earth history. To further explore the utility of iodine as a paleo-environmental proxy, we present here a new method of extracting organically bound iodine (Iorg) from shale using volumes of samples on the order of tens of milligrams, thus offering the potential for high-resolution work across thin shale beds. The ratio of Iorg to total organic carbon (I/TOC) in modern surface and subsurface sediments decreases with decreasing bottom-water oxygen, which may be used to reconstruct paleo-redox changes. As a proof of concept, we evaluate the I/TOC proxy in Holocene sediments from the Baltic Sea, Landsort Deep (IODP 347) and discuss those data within a framework of additional independent redox proxies, e.g., iron speciation and [Mo]. The results imply that I/TOC may be sensitive to hypoxic–suboxic conditions, complementary to proxies sensitive to more reducing, anoxic–euxinic conditions. Then, we test the usage of I/TOC in sediments deposited during Late Cretaceous, Cenomanian–Turonian Oceanic Anoxic Event (OAE) 2 from ~ 94 million years ago (Ma). We generated I/TOC and Iorg records from six OAE 2 sections: Tarfaya (Morocco), Furlo (central Italy), Demerara Rise (western equatorial Atlantic), Cape Verde Basin (eastern equatorial Atlantic), South Ferriby (UK), and Kerguelen Plateau (southern Indian Ocean), which provide a broad spatial coverage. Generally, I/TOC decreases over the interval recorded by the positive carbon-isotope excursion, the global signature of OAE 2, suggesting an expansion of more reducing bottom-water conditions and consistent with independent constraints from iron speciation and redox-sensitive trace-metals (e.g., Mo). Relatively higher I/TOC values (thus more oxic conditions) are recorded at two high latitude sites for OAE 2, supporting previous model simulations (cGENIE) that indicated higher bottom water oxygen concentrations in these regions. Our results also indicate that organic-rich and oxygenated seafloors are likely a major sink of iodine and correspondingly influence its global seawater inventory.
    Description: XZ, WL and ZL are supported by NSF EAR 1349252. DH and TWL acknowledge support from the Geobiology and Low-temperature Geochemistry (GG) Program of NSF. DH would like to acknowledge a Schlanger Ocean Drilling Fellowship.
    Keywords: I/TOC ; Bottom water ; OAE 2 ; Black shale ; Baltic
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...