GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 100 (2000), S. 107-134 
    ISSN: 1572-9613
    Keywords: liquid structure ; integral equation closures ; thermodynamic consistency ; core and tail projections of direct correlation function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In important early work, Stell showed that one can determine the pair correlation function h(r) of the hard-sphere fluid for all distances r by specifying only the “tail” of the direct correlation function c(r) at separations greater than the hard-core diameter. We extend this idea in a very natural way to potentials with a soft repulsive core of finite extent and a weaker and longer ranged tail. We introduce a new continuous function T(r) which reduces exactly to the tail of c(r) outside the (soft) core region and show that both h(r) and c(r) depend only on the “out projection” of T(r): i.e., the product of the Boltzmann factor of the repulsive core potential times T(r). Standard integral equation closures can thus be reinterpreted and assessed in terms of their predictions for the tail of c(r) and simple approximations for its form suggest new closures. A new and very efficient variational method is proposed for solving the Ornstein–Zernike equation given an approximation for the tail of c. Initial applications of these ideas to the Lennard-Jones and the hard-core Yukawa fluid are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...