GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 81 (1995), S. 199-222 
    ISSN: 1572-9613
    Keywords: Multiphase flow ; computational techniques ; phase transitions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A new lattice-gas cellular automaton model for simulating binary fluids in three dimensions is introduced. It is particularly suitable for modeling slow flows of mixtures with complicated interface geometries or within complicated boundaries, such as in the interior of a porous rock. Phase separation is triggered spontaneously in the model by statistical fluctuations and phase domains are approximately isotropic. The measured surface tension is large compared to that in analogous two-dimensional models. The model is applied to a study of the time-dependent effective viscosity of a phase-separating mixture in a simple shear flow. Results qualitatively match both experiment and theory: the viscosity increases rapidly, then decays gradually to a steady-state value which is larger than the viscosity of the pure fluids. The effective viscosity increases with increasing concentration and decreases with increasing strain rate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...