GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-22
    Description: The critical role of rare earth elements (Lanthanides plus Yttrium; hereafter REE) in high-tech technologies and consequently their increasing demand from the industry, in addition to the capability of REE to trace water–rock interaction processes, boosted the study of REE in unconventional extreme environments. This study is focused on the geochemical behaviour of REE in the hyperacid sulphate-rich brine of the crater lake of Poás volcano (Costa Rica), where the precipitation of gypsum occurs. This system can hence be considered as a natural laboratory to evaluate the fractionation of REE between the lake water (mother brine) and the precipitating gypsum mineral. Total REE concentrations dissolved in waters range from 1.14 to 2.18 mg kg−1. Calculated distribution coefficients (KD) for REE between the gypsum and the mother brine indicate a preferential removal of the light REE (LREE) with respect to the heavy REE (HREE), with KD values mainly decreasing from La to Lu. During the observation period (2007–2009), the distributions of REE concentrations dissolved in lake water normalized to the average local volcanic rock show two different trends: i) LREE depleted patterns, and ii) flat patterns. The identification of the LREE depleted pattern is justified by the KD calculated in this study. We demonstrate that the precipitation of gypsum is able to strongly fractionate the REE in hyperacid sulphate-rich brine, inducing changes in REE concentrations and distributions over time. X-ray computed tomography imaging was performed on gypsum crystal (precipitated from the lake waters) to gain insights on crystal-scale processes possibly controlling the REE geochemistry, i.e. surface processes vs. structural substitution. Accordingly, the heavy metals and possibly the REE seem to be mainly located on the crystal surface rather than inside the crystal, suggesting that a surface process could be the major process controlling REE removal from the water to the crystal.
    Description: Published
    Description: 87-96
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Keywords: Poas volcano ; Water–rock interaction ; Hyperacid brine lake ; Rare earth elements ; Gypsum precipitation ; 04.08. Volcanology ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-22
    Description: Geochemical behaviour of rare earth elements (REE), Zr, andHfwas investigated in CO2-richwaters circulating in Pantelleria Island also including ‘Specchio di Venere’ Lakewithin a calderic depression. A wide range of total dissolved REE concentrationswas found (2.77–12.07 nmol L−1),with the highest contents in the lake. Themain REE complexes in the CO2-rich waters are [REE(CO3)2]− and [REECO3]+, showing changeable proportions as a function of pH. The REE normalized to post-Archean Australian Shale (PAAS) showed similar features with heavy REE (HREE) enrichments in CO2-rich waters collected from springs and wells, whereas a different REE pattern was found in the ‘Specchio di Venere’ Lake water with middle REE (MREE) enrichments. The PAAS normalized concentration ratios (LREE/HREE)N and (MREE/HREE)N in waters are b1, except for the lake water in which (MREE/HREE)N N 1. Positive Eu anomalies were found in the investigated waters owing to water–rock interactions with less evolved host rocks. Ce anomalies as a function of Eh values were recognized, with the highest Ce anomaly occurring in the lake water with respect to the CO2-rich waters. The Y/Ho and Zr/Hf molar ratios are higher in the investigated waters (except for lake water) than that in the local rocks, with values ranging from 35.4 to 77.9 and from 76.3 to 299, respectively. The precipitation of authigenic phases was considered to be responsible for the increase in the Y/Ho and Zr/Hf ratios owing to enhanced Hf and Ho removal with respect to Zr and Y. The REE patterns in the lake water show a similar shape (MREE-enriched and a positive Ce anomaly) as those found in the settling dust and in the desert varnish coating of the rocks in arid environments,which mainly contain Fe- and Mn-oxyhydroxides and clay minerals. Similarly, Y/Ho and Zr/Hf ratios in the ‘Specchio di Venere’ Lake (35.4 and 76.3, respectively) show a desert varnish signature. These data, coupled with the presence of iron oxyhydroxides and phyllosilicates in the shallowest water layer of the ‘Specchio di Venere’ Lake, verify the aeolian input from the Sahara Desert
    Description: Published
    Description: 1-11
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Rare earth elements ; Zirconium ; Hafnium ; CO2-rich waters ; Lake ; Aeolian input ; 05.09
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-20
    Description: Volcanic lakes are complex natural systems and their chemical composition is related to a myriad of processes. The chemical composition of major, minor, Rare Earth Elements (REE) and physico-chemical parameters at the hyperacid crater lake of Rincón de la Vieja volcano (Costa Rica) are here investigated during February 2013–August 2014. The study of the lake chemical composition allows to identify the main geochemical processes occurring in the lake and to track the changes in the volcanic activity, both important for active volcanoes monitoring. The total REE concentration ( REE) dissolved in the crater lake varies from 2.7 to 3.6 mg kg−1 during the period of observation. REE in the water lake samples normalized to the average volcanic local rock (REEN-local rock) are depleted in light REE (LREE). On the contrary REEN-local rock in the solids precipitated (mainly gypsum/anhydrite), from lake water samples in laboratory at 22°C, are enriched in LREE. The low variability of (La/Pr)N-local rock and (LREE/ HREE)N-local rock ratios (0.92–1.07 and 0.66–0.81, respectively) in crater lake waters is consistent with the low phreatic activity (less than 10 phreatic eruptions in 2 years) observed during the period of observation. This period of low activity precedes the unrest started in 2015, thus, it could be considered as a pre-unrest, characterized by infrequent phreatic eruptions. No clear changes in the REE chemistry are associated with the phreatic eruption occurred at mid- 2013. The results obtained investigating water-rock interaction processes at theRincón de la Vieja crater lake show that rock dissolution and mineral precipitation/ dissolution are the main processes that control the variability of cations composition over time. In particular, precipitation and dissolution of gypsum and alunite are responsible for the variations of REE in the waters. Despite the low variations of (La/Pr)N-local rock and (LREE/HREE)N-local rock ratios, this study allows to suggest that REE can be used, together with major elements, as practical tracers of water-rock interaction processes and mineral precipitation/ dissolution at active hyperacid crater lakes over time, also during periods of quiescence and low phreatic activity.
    Description: Published
    Description: 1197568
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: Rare earth elements ; hyperacid crater lake ; geochemical monitoring ; sulfate minerals ; water-rock interaction
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-16
    Description: The Caviahue-Copahue Volcanic Complex is one of the most studied active volcanic systems in the South American Andean range, and yet little research has focused on trace and rare-earth elements of waters, especially during an eruptive cycle. In this study, we sampled and investigated natural waters from 23 sites (involving the crater lake, hot springs, streams, rivers, and bubbling pools) in two campaigns in 2017 and 2018, using physi cochemical parameters, major, trace and rare-earth elements concentrations. With this novel dataset, it was possible to identify, characterize and compare three groups of waters with distinctive hydrofacies. Indeed, the normalization of water compositions against host rock concentrations showed a particular trace element pattern for each group of waters. Although the absolute concentrations of the elements in each sampling site changed from 2017 to 2018, the normalized patterns did not. Boron, As, Cd, Tl, Se, and Te, commonly recognized as volatile, are the main trace elements that magmatic gases supply to the system headwaters, whereas elements such as Ca, K, and Ba are affected by precipitation of secondary minerals (gypsum, anhydrite, barite, jarosite, and alunite). Furthermore, the main river draining the summit volcano shows a steep decrease in As, Cr, and V concentrations correlated to the precipitation of Fe and Al hydroxysulfates (schwertmannite and basaluminite, respectively). Moreover, it is the first time that a comparison between the different water groups is made using the patterns of the rare-earth elements, allowing us to identify and separate depletion patterns due to dilution processes from those due to precipitation processes.
    Description: Published
    Description: 121602
    Description: JCR Journal
    Keywords: Copahue volcano ; Hydrological system ; Geothermal ; Trace elements ; Rare earth elements
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...