GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Biotechnology. ; Nutrition . ; Natural products.
    Description / Table of Contents: Chapter 1. Cyanobacterial Cell Factories; Insight into Their Pharmaceutical and Nutraceutical Properties -- Chapter 2. Cyanobacterial Pigments: Pharmaceutical and Nutraceutical Applications -- Chapter 3. Spirulina as a Food of the Future -- Chapter 4. Potential of Cyanobacterial Biomass as an Animal Feed -- Chapter 5. Cost-Effective Cultivation of Cyanobacteria for Biotechnological Applications -- Chapter 6. Storage, Processing, and Stability of Phycobilins -- Chapter 7. Non-Conventional and Novel Strategies to Produce Spirulina Biomass -- Chapter 8. Cyanobacteria-based Green Synthesis of Nanoparticles for Industrial Applications -- Chapter 9. Cyanobacterial Bioactive Compounds; Synthesis, Extraction, and Applications -- Chapter 10. Threats, Challenges, and Issues of Large-Scale Cyanobacterial Cultivation -- Chapter 11. Cyanobacterial Exopolysaccharides; Extraction, Processing and Applications -- Chapter 12. Innovations in the Cyanobacteria-Based Biorefineries for Biopharmaceutical Industries -- Chapter 13. Cyanobacteria Biotechnology: Challenges and Prospects -- Chapter 14. Global Research Trends in Cyanobacteria; Bioproducts and Culture Collection.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XIV, 356 p. 47 illus., 42 illus. in color.)
    Edition: 1st ed. 2024.
    ISBN: 9783031455230
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 614-618 
    ISSN: 0006-3592
    Keywords: baculovirus ; aeration ; insect cell ; medium ; recombinant DNA ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An experimental study was undertaken to quantify the effects of infection cell density, medium condition, and surface aeration on recombinant protein yields in insect cells. In the absence of surface aeration and fresh medium, insect cells generated higher product yields (on a per cell basis) when infected with recombinant baculovirus at low cell densities, LCD (3 × 105-4 × 105 cells/mL), than at high cell densities, HCD (〉0.9 × 106 cells/mL), for two distinct baculovirus types. Surface aeration of a HCD culture infected in spent medium improved β-glactosidase yields 5-fold over the nonaerated case. Surface aeration and medium replenishment improved β-galactosidase yields of a HCD culture by 20-fold (compared to a 1.6-fold improvement for a LCD culture), resulting in cultures with productivties that were independent of the cell density at infection.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...