GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: The purpose of this guide is to assist researchers in the identification of larvae of benthic invertebrates at hydrothermal vents. Our work is based on plankton sampling at the East Pacific Rise 9-10°N vent field from 1991-2007, supplemented by benthic collections of juveniles. In addition to images and descriptions of the species, we included frequency data from large-volume plankton pump samples taken between 1998 and 2004 and time-series sediment trap samples from 2004-2005.
    Description: Funding provided by NSF grants OCE-9619605, OCE-9712233, OCE-0424593 and ATM-0428122 and ChEss Grant #WHOI 1334800.
    Keywords: Marine plankton ; Marine invertebrates ; Larvae
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 92 (2013): 46-57, doi:10.1016/j.dsr2.2013.03.032.
    Description: The vertical position of larvae of vent species above a mid-ocean ridge potentially has a strong effect on their dispersal. Larvae may be advected upward in the buoyant vent plume, or move as a consequence of their buoyancy or active swimming. Alternatively, they may be retained near bottom by the topography of the axial trough, or by downward swimming. At vents near 9°50’N on the axis of the East Pacific Rise, evidence for active larval positioning was detected in a comparison between field observations of larvae in the plankton in 2006 and 2007 and distributions of non-swimming larvae in a two-dimensional bio-physical model. In the field, few vent larvae were collected at the level of the neutrally buoyant plume (~75 m above bottom); their relative abundances at that height were much lower than those of simulated larvae from a near-bottom release in the model. This discrepancy was observed for many vent species, particularly gastropods, suggesting that they may actively remain near bottom by sinking or swimming downward. Near the seafloor, larval abundance decreased from the ridge axis to 1000 m off axis much more strongly in the observations than in the simulations, again pointing to behavior as a potential regulator of larval transport. We suspect that transport off axis was reduced by downward-moving behavior, which positioned larvae into locations where they were isolated from cross-ridge currents by seafloor topography, such as the walls of the axial valley – which are not resolved in the model. Cross-ridge gradients in larval abundance varied between gastropods and polychaetes, indicating that behavior may vary between taxonomic groups, and possibly between species. These results suggest that behaviorally mediated retention of vent larvae may be common, even for species that have a long planktonic larval duration and are capable of long-distance dispersal.
    Description: We gratefully acknowledge the support of NSF grants OCE-0424953 and OCE-0525361, which funded the Larval Dispersal on the Deep East Pacific Rise (LADDER) project. WHOI provided additional support to LSM as an Ocean Life Fellow, to DJM as the Holger Jannasch Chair for Excellence in Oceanography, and to JRL as the Edward W. and Betty J. Scripps Senior Scientist Chair. JWL was supported by the National Oceanic and Atmospheric Administration’s (NOAA) Vents Program and by NOAA’s Pacific Marine Environmental Laboratory.
    Keywords: Hydrothermal springs ; Deep water ; Larvae ; Mid-ocean ridges
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-13
    Description: This data package provides the sampling locations and identifications for macrofauna and larvae collected at the Auka hydrothermal vent field in Pescadero Basin in 2017 and used in a study by Fleming et al. (2022). This data package contains five tables: paired tables for benthic slurps (sampling metadata and specimen counts), paired tables for plankton slurps (sampling metadata and specimen counts), and one table summarizing benthic and plankton specimens with Barcode of Life Data System (BOLD) Barcode Index Numbers (BINs). The paired data tables are partially aligned to Darwin Core event and occurrence tables for future contribution to the Ocean Biodiversity Information System (OBIS). Records for specimens in BOLD are available through the Global Biodiversity Information Facility (GBIF).
    Description: Dalio Ocean Initiative and E/V Nautilus/Ocean Exploration Trust
    Keywords: Hydrothermal vent ; Benthos ; Macrofauna ; Zooplankton ; Larvae ; Remotely-operated vehicle
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 157 (2010): 1049-1062, doi:10.1007/s00227-009-1386-8.
    Description: The rapid identification of hydrothermal vent-endemic larvae to the species level is a key limitation to understanding the dynamic processes that control the abundance and distribution of fauna in such a patchy and ephemeral environment. Many larval forms collected near vents, even those in groups such as gastropods that often form a morphologically distinct larval shell, have not been identified to species. We present a staged approach that combines morphological and molecular identification to optimize the capability, efficiency, and economy of identifying vent gastropod larvae from the northern East Pacific Rise (NEPR). With this approach, 15 new larval forms can be identified to species. A total of 33 of the 41 gastropod species inhabiting the NEPR, and 26 of the 27 gastropod species known to occur specifically in the 9° 50’ N region, can be identified to species. Morphological identification efforts are improved by new protoconch descriptions for Gorgoleptis spiralis, Lepetodrilus pustulosus, Nodopelta subnoda, and Echinopelta fistulosa. Even with these new morphological descriptions, the majority of lepetodrilids and peltospirids require molecular identification. Restriction fragment length polymorphism digests are presented as an economical method for identification of five species of Lepetodrilus and six species of peltospirids. The remaining unidentifiable specimens can be assigned to species by comparison to an expanded database of 18S ribosomal DNA. The broad utility of the staged approach was exemplified by the revelation of species-level variation in daily planktonic samples and the identification and characterization of egg capsules belonging to a conid gastropod Gymnobela sp. A. The improved molecular and morphological capabilities nearly double the number of species amenable to field studies of dispersal and population connectivity.
    Description: Funding was provided by as Woods Hole Oceanographic Institution Deep Ocean Exploration Institute grant to L.M and S. Beaulieu, National Science Foundation grants OCE-0424953, OCE-9712233, and OCE-9619605 to L.M, OCE-0327261 to T.S., and OCE-0002458 to K. Von Damm, and a National Defense Science and Engineering Graduate fellowship to D.A.
    Keywords: Hydrothermal vent ; Larvae ; Protoconch ; Gastropod ; Lepetodrilus ; Peltospira ; RFLP ; Barcode ; Egg capsules
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...