GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © National Shellfisheries Association, 2008. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 27 (2008): 169-175, doi:10.2983/0730-8000(2008)27[169:HVMHCP]2.0.CO;2.
    Description: Between October 2005 and March 2006, a seafloor volcanic eruption occurred at 9°50′N East Pacific Rise (EPR), establishing a “time zero” for characterizing newly-formed hydrothermal vent habitats and comparing them to pre-eruption habitats. Before the eruption, mussels (Bathymodiolus thermophilus) formed large aggregates between 9°49.6′ and 9°50.3′N. After the eruption, the few mussels remaining were in sparsely-distributed individuals and clumps, seemingly transported via lava flows or from mass wasting of the walls of the axial trough. In situ voltammetry with solid state gold-amalgam microelectrodes was used to characterize the chemistry of vent fluids in mussel habitats from 2004 to 2007, providing data sets for comparison of oxygen, sulfide, and temperature. Posteruption fluids contained higher sulfide-to-temperature ratios (i.e., slopes of linear regressions) (10.86 μM °C−1) compared with pre-eruption values in 2004 and 2005 (2.79 μM °C−1 and −0.063 μM °C−1, respectively). These chemical differences can be attributed to the difference in geographic location in which mussels were living and physical factors arising from posteruptive fluid emissions.
    Description: This work was funded by NSF grants OCE- 0327353 (RAL and CV), OCE-0327261 and OCE-0451983 (TS), OCE-0326434 and OCE-0308398 (GWL).
    Keywords: Bathymodiolus thermophilus ; East Pacific Rise ; Hydrothermal vent ; In situ electrochemistry ; Mussels ; Oxygen ; Sulfide
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q01006, doi:10.1029/2006GC001333.
    Description: Recent advances in underwater vehicle navigation and sonar technology now permit detailed mapping of complex seafloor bathymetry found at mid-ocean ridge crests. Imagenex 881 (675 kHz) scanning sonar data collected during low-altitude (~5 m) surveys conducted with DSV Alvin were used to produce submeter resolution bathymetric maps of five hydrothermal vent areas at the East Pacific Rise (EPR) Ridge2000 Integrated Study Site (9°50′N, “bull's-eye”). Data were collected during 29 dives in 2004 and 2005 and were merged through a grid rectification technique to create high-resolution (0.5 m grid) composite maps. These are the first submeter bathymetric maps generated with a scanning sonar mounted on Alvin. The composite maps can be used to quantify the dimensions of meter-scale volcanic and hydrothermal features within the EPR axial summit trough (AST) including hydrothermal vent structures, lava pillars, collapse areas, the trough walls, and primary volcanic fissures. Existing Autonomous Benthic Explorer (ABE) bathymetry data (675 kHz scanning sonar) collected at this site provide the broader geologic context necessary to interpret the meter-scale features resolved in the composite maps. The grid rectification technique we employed can be used to optimize vehicle time by permitting the creation of high-resolution bathymetry maps from data collected during multiple, coordinated, short-duration surveys after primary dive objectives are met. This method can also be used to colocate future near-bottom sonar data sets within the high-resolution composite maps, enabling quantification of bathymetric changes associated with active volcanic, hydrothermal and tectonic processes.
    Description: This work was supported by an NSF Ridge2000 fellowship to V.L.F. and a Woods Hole Oceanographic Institution fellowship supported by the W. Alan Clark Senior Scientist Chair (D.J.F.). Funding was also provided by the Censsis Engineering Research Center of the National Science Foundation under grant EEC-9986821. Support for field and laboratory studies was provided by the National Science Foundation under grants OCE-9819261 (D.J.F. and M.T.), OCE-0096468 (D.J.F. and T.S.), OCE-0328117 (SMC), OCE-0525863 (D.J.F. and S.A.S.), OCE-0112737 ATM-0427220 (L.L.W.), and OCE- 0327261 and OCE-0328117 (T.S.). Additional support was provided by The Edwin Link Foundation (J.C.K.).
    Keywords: High-resolution bathymetry ; Near-bottom sonar ; East Pacific Rise ; Ridge2000
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 5546372 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 901, doi:10.3389/fmicb.2015.00901.
    Description: Many deep-sea hydrothermal vent systems are regularly impacted by volcanic eruptions, leaving fresh basalt where abundant animal and microbial communities once thrived. After an eruption, microbial biofilms are often the first visible evidence of biotic re-colonization. The present study is the first to investigate microbial colonization of newly exposed basalt surfaces in the context of vent fluid chemistry over an extended period of time (4–293 days) by deploying basalt blocks within an established diffuse-flow vent at the 9°50′ N vent field on the East Pacific Rise. Additionally, samples obtained after a recent eruption at the same vent field allowed for comparison between experimental results and those from natural microbial re-colonization. Over 9 months, the community changed from being composed almost exclusively of Epsilonproteobacteria to a more diverse assemblage, corresponding with a potential expansion of metabolic capabilities. The process of biofilm formation appears to generate similar surface-associated communities within and across sites by selecting for a subset of fluid-associated microbes, via species sorting. Furthermore, the high incidence of shared operational taxonomic units over time and across different vent sites suggests that the microbial communities colonizing new surfaces at diffuse-flow vent sites might follow a predictable successional pattern.
    Description: This work was partly supported by grants from the US National Science Foundation to SS (OCE-0452333, 1136727), to TS (OCE-0117117, 0525907, 0961186, 1043064, 0327261, 1131620), to WS and KD (1434798), as well as a grant by the WHOI Deep Ocean Exploration Institute to SB, TS, and SS.
    Keywords: Hydrothermal vents ; Colonization ; Species sorting ; Settlement ; Volcanic eruption ; 16S rRNA ; Epsilonproteobacteria ; Disturbance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © National Shellfisheries Association, 2008. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 27 (2008): 177-190, doi:10.2983/0730-8000(2008)27[177:IBVFCT]2.0.CO;2.
    Description: In April 1991, submarine volcanic eruptions initiated the formation of numerous hydrothermal vents between 9°45′ and 9°52′N along the crest of the East Pacific Rise (EPR). Dramatic changes in biological community structure and vent fluid chemistry have been documented throughout this region since the eruptive event. By April 2004, mussels (Bathymodiolus thermophilus) dominated the faunal assemblages at several of the vent sites formed during of after the 1991 eruptions, whereas other habitats within the region were dominated by the vestimentiferan Riftia pachyptila. In the present paper, we build upon the extensive data sets obtained at these sites over the past decade and describe a manipulative experiment (conducted at 9°49.94′N; 104°14.43′W on the EPR) designed to assess interrelationships between vent fluid chemistry, temperature, biological community structure, and seismic activity. To this end, in situ voltammetric systems and thermal probes were used to measure H2S/HS− and temperature over time in a denuded region of an extensive mussel bed in which an exclusion cage was placed to inhibit the subsequent migration of mussels into the denuded area. Fluid samples were taken from the same locations to characterize the associated microbial constituents. Basalt blocks, which were placed in the cage in April 2004 and subsequently recovered in April 2005, were colonized by more than 25 different species of invertebrates, including numerous vestimentiferans and remarkably few mussels. Recorded temporal changes in vent fluid chemistry and temperature regimes, when coupled with microbiological characterization of the vent fluids and seismic activity data obtained from ocean bottom seismometers, shed considerable light on factors controlling biological community structure in these hydrothermal ecosystems.
    Description: Supported by NSF Grants OCE-9529819, ESI-0087679 (RAL), OCE-0327353 (RAL and CV), OCE-0327261, OCE-0451983 (TS), MCB-0456676, CHE-0221978 (CV), OCE-0326434 (GWL), and OCE-0327283 (MT), the Deep Ocean Exploration Institute at the Woods Hole Oceanographic Institution, and the New Jersey Agricultural Experiment Station at Rutgers University.
    Keywords: Hydrothermal vents ; Seismicity ; Voltammetry ; Vent chemistry ; Mussels
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q03002, doi:10.1029/2005GC001094.
    Description: In the decade following documented volcanic activity on the East Pacific Rise near 9°50′N, we monitored hydrothermal vent fluid temperature variations in conjunction with approximately yearly vent fluid sampling to better understand the processes and physical conditions that govern the evolution of seafloor hydrothermal systems. The temperature of both diffuse flow (low-temperature) and focused flow (high-temperature) vent fluids decreased significantly within several years of eruptions in 1991 and 1992. After mid-1994, focused flow vents generally exhibited periods of relatively stable, slowly varying temperatures, with occasional high- and low-temperature excursions lasting days to weeks. One such positive temperature excursion was associated with a crustal cracking event. Another with both positive and negative excursions demonstrated a subsurface connection between adjacent focused flow and diffuse flow vents. Diffuse flow vents exhibit much greater temperature variability than adjacent higher-temperature vents. On timescales of a week or less, temperatures at a given position within a diffuse flow field often varied by 5°–10°C, synchronous with near-bottom currents dominated by tidal and inertial forcing. On timescales of a week and longer, diffuse flow temperatures varied slowly and incoherently among different vent fields. At diffuse flow vent sites, the conceptual model of a thermal boundary layer immediately above the seafloor explains many of the temporal and spatial temperature variations observed within a single vent field. The thermal boundary layer is a lens of warm water injected from beneath the seafloor that is mixed and distended by lateral near-bottom currents. The volume of the boundary layer is delineated by the position of mature communities of sessile (e.g., tubeworms) and relatively slow-moving organisms (e.g., mussels). Vertical flow rates of hydrothermal fluids exiting the seafloor at diffuse vents are less than lateral flow rates of near-bottom currents (5–10 cm/s). The presence of a subsurface, shallow reservoir of warm hydrothermal fluids can explain differing temperature behaviors of adjacent diffuse flow and focused flow vents at 9°50′N. Different average temperatures and daily temperature ranges are explained by variable amounts of mixing of hydrothermal fluids with ambient seawater through subsurface conduits that have varying lateral permeability.
    Description: Field and shore-based analyses have been supported by the National Science Foundation (OCE-0096468, OCE-8917311, OCE-9217026, OCE-9302205, OCE-0327261), the Woods Hole Oceanographic Institution's Vetlesen Fund and W. A. Clark Senior Scientist Chair (DJF), and the Devonshire Foundation (TMS).
    Keywords: Hydrothermal systems ; East Pacific Rise ; Vent fluids ; Seafloor eruptions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 2949653 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...