GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-13
    Description: Forty five gas samples have been collected from natural gas manifestations at the island of Kos, the majority of which is found underwater along the southern coast of the island. On land, two anomalous degassing areas have been recognized. These areas are mainly characterised by lack of vegetation and after long dry periods by the presence of sulfate salt efflorescences. Carbon dioxide is the prevailing gas species (ranging from 88 to 99 %), whilst minor amounts of N2 (up to 7.5 %) and CH4 (up to 2.1 %) are also present. Significant contents of H2 (up to 0.2 %) and H2S (up to 0.3 %) are found in the on-land manifestations. Only one of the underwater manifestations is generally rich in N2 (up to 98.9 %) with CH4 concentrations up to 11.7 % and occasionally extremely low CO2 amounts (down to 0.09 %). Isotope composition of He ranges from 0.85 to 6.71 R/RA, indicating a sometimes strong mantle contribution; the highest values measured are found in the two highly degassing areas of Paradise Beach and Volcania. C-isotope composition of CO2 ranges from -20.1 to 0.64 ‰ vs V-PDB, with the majority of the values being concentrated around -1 ‰ and therefore proposing a mixed mantle – limestones origin. Isotope composition of CH4 ranges from -21.5 to +2.8 ‰ vs V-PDB for C and from -143 to +36 ‰ vs V-SMOW for H, pointing to a geothermal origin with sometimes evident secondary oxidation processes. The dataset presented in this work consists of sites that were repeatedly sampled in the last few years, with some of which being also sampled just before and immediately after the magnitude 6.6 earthquake that occurred on the 20th of July 2017 about 15 km ENE of the island of Kos. Changes in the degassing areas along with significant variations in the geochemical parameters of the released gases were observed both before and after the seismic event, however no coherent model explaining those changes was obtained. CO2-flux measurements showed values up to about 104 g×m-2×d-1 in the areas of Volcania and Kokkinonero, 5×104 g×m-2×d-1 at Paradise beach and 8×105 g×m-2×d-1 at Therma spring. CO2 output estimations gave values of 24.6, 16.8, 12.7 and 20.6 t×d-1 respectively for the above four areas. The total output of the island is 74.7 t×d-1 and is comparable to the other active volcanic/geothermal systems of Greece (Nisyros, Nea Kameni, Milos, Methana and Sousaki).
    Description: Published
    Description: ID 3041037
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Carbon dioxide ; geothermal systems ; CO2 fluxes ; seismic activity ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-01
    Description: Duvalo “volcano” is a site of anomalous geogenic degassing close to Ohrid (North Macedonia) not related to volcanic activity, despite its name. CO2 flux measurements made with the accumulation chamber (321 sites over ∼50,000 m2) showed fluxes up to nearly 60,000 g m−2 d−1, sustaining a total output of ∼67 t d−1. Soil gas samples were taken at 50 cm depth from sites with high CO2 fluxes and analyzed for their chemical and isotope composition. The gas is mainly composed by CO2 (〉90%) with significant concentrations of H2S (up to 0.55%) and CH4 (up to 0.32%). The isotope compositions of He (R/RA 0.10) and of CO2 (δ13C ∼ 0‰) exclude significant mantle contribution, while δ13C-CH4 (∼−35‰) and δ2H-CH4 (∼−170‰) suggest a thermogenic origin for CH4. The area is characterized by intense seismic activity and Duvalo corresponds to an active tectonic structure bordering the Ohrid graben. The production of H2S within the stratigraphic sequence may be explained by thermochemical reduction of sulfate. The uprising H2S is partially oxidized to sulfuric acid that, reacting with carbonate rocks, releases CO2. The tectonic structure of the area favors fluid circulation, sustaining H2S production and oxidation, CO2 production and allowing the escape of the gases to the atmosphere. In the end, Duvalo represents a tectonic-related CO2 degassing area whose gases originate mostly, if not exclusively, in the shallowest part of the crust (〈10 km). This finding highlights that even systems with trivial mantle contribution may sustain intense CO2 degassing (〉1,000 t km−2 d−1).
    Description: Published
    Description: e2021GC010198
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Geogenic degassing ; CO2 fluxes ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...