GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 901, doi:10.3389/fmicb.2015.00901.
    Description: Many deep-sea hydrothermal vent systems are regularly impacted by volcanic eruptions, leaving fresh basalt where abundant animal and microbial communities once thrived. After an eruption, microbial biofilms are often the first visible evidence of biotic re-colonization. The present study is the first to investigate microbial colonization of newly exposed basalt surfaces in the context of vent fluid chemistry over an extended period of time (4–293 days) by deploying basalt blocks within an established diffuse-flow vent at the 9°50′ N vent field on the East Pacific Rise. Additionally, samples obtained after a recent eruption at the same vent field allowed for comparison between experimental results and those from natural microbial re-colonization. Over 9 months, the community changed from being composed almost exclusively of Epsilonproteobacteria to a more diverse assemblage, corresponding with a potential expansion of metabolic capabilities. The process of biofilm formation appears to generate similar surface-associated communities within and across sites by selecting for a subset of fluid-associated microbes, via species sorting. Furthermore, the high incidence of shared operational taxonomic units over time and across different vent sites suggests that the microbial communities colonizing new surfaces at diffuse-flow vent sites might follow a predictable successional pattern.
    Description: This work was partly supported by grants from the US National Science Foundation to SS (OCE-0452333, 1136727), to TS (OCE-0117117, 0525907, 0961186, 1043064, 0327261, 1131620), to WS and KD (1434798), as well as a grant by the WHOI Deep Ocean Exploration Institute to SB, TS, and SS.
    Keywords: Hydrothermal vents ; Colonization ; Species sorting ; Settlement ; Volcanic eruption ; 16S rRNA ; Epsilonproteobacteria ; Disturbance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © National Shellfisheries Association, 2008. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 27 (2008): 177-190, doi:10.2983/0730-8000(2008)27[177:IBVFCT]2.0.CO;2.
    Description: In April 1991, submarine volcanic eruptions initiated the formation of numerous hydrothermal vents between 9°45′ and 9°52′N along the crest of the East Pacific Rise (EPR). Dramatic changes in biological community structure and vent fluid chemistry have been documented throughout this region since the eruptive event. By April 2004, mussels (Bathymodiolus thermophilus) dominated the faunal assemblages at several of the vent sites formed during of after the 1991 eruptions, whereas other habitats within the region were dominated by the vestimentiferan Riftia pachyptila. In the present paper, we build upon the extensive data sets obtained at these sites over the past decade and describe a manipulative experiment (conducted at 9°49.94′N; 104°14.43′W on the EPR) designed to assess interrelationships between vent fluid chemistry, temperature, biological community structure, and seismic activity. To this end, in situ voltammetric systems and thermal probes were used to measure H2S/HS− and temperature over time in a denuded region of an extensive mussel bed in which an exclusion cage was placed to inhibit the subsequent migration of mussels into the denuded area. Fluid samples were taken from the same locations to characterize the associated microbial constituents. Basalt blocks, which were placed in the cage in April 2004 and subsequently recovered in April 2005, were colonized by more than 25 different species of invertebrates, including numerous vestimentiferans and remarkably few mussels. Recorded temporal changes in vent fluid chemistry and temperature regimes, when coupled with microbiological characterization of the vent fluids and seismic activity data obtained from ocean bottom seismometers, shed considerable light on factors controlling biological community structure in these hydrothermal ecosystems.
    Description: Supported by NSF Grants OCE-9529819, ESI-0087679 (RAL), OCE-0327353 (RAL and CV), OCE-0327261, OCE-0451983 (TS), MCB-0456676, CHE-0221978 (CV), OCE-0326434 (GWL), and OCE-0327283 (MT), the Deep Ocean Exploration Institute at the Woods Hole Oceanographic Institution, and the New Jersey Agricultural Experiment Station at Rutgers University.
    Keywords: Hydrothermal vents ; Seismicity ; Voltammetry ; Vent chemistry ; Mussels
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Amon, D. J., Kennedy, B. R. C., Cantwel, K., Suhre, K., Glickson, D., Shank, T. M., & Rotjan, R. D. Deep-sea debris in the central and western Pacific Ocean. Frontiers in Marine Science, 7, (2020): 369, doi:10.3389/fmars.2020.00369.
    Description: Marine debris is a growing problem in the world’s deep ocean. The naturally slow biological and chemical processes operating at depth, coupled with the types of materials that are used commercially, suggest that debris is likely to persist in the deep ocean for long periods of time, ranging from hundreds to thousands of years. However, the realized scale of marine debris accumulation in the deep ocean is unknown due to the logistical, technological, and financial constraints related to deep-ocean exploration. Coordinated deep-water exploration from 2015 to 2017 enabled new insights into the status of deep-sea marine debris throughout the central and western Pacific Basin via ROV expeditions conducted onboard NOAA Ship Okeanos Explorer and RV Falkor. These expeditions included sites in United States protected areas and monuments, other Exclusive Economic Zones, international protected areas, and areas beyond national jurisdiction. Metal, glass, plastic, rubber, cloth, fishing gear, and other marine debris were encountered during 17.5% of the 188 dives from 150 to 6,000 m depth. Correlations were observed between deep-sea debris densities and depth, geological features, and distance from human-settled land. The highest densities occurred off American Samoa and the main Hawaiian Islands. Debris, mostly consisting of fishing gear and plastic, were also observed in most of the large-scale marine protected areas, adding to the growing body of evidence that even deep, remote areas of the ocean are not immune from human impacts. Interactions with and impacts on biological communities were noted, though further study is required to understand the full extent of these impacts. We also discuss potential sources and long-term implications of this debris.
    Description: We wish to thank the Officers and crew of the NOAA Ship Okeanos Explorer for shipboard support, NOAA OER, and the Global Foundation for Ocean Exploration team for their tremendous support during the fieldwork in the Pacific Ocean. We appreciate NOAA’s support for CAPSTONE which was a collaboration between OER, Office of Marine and Aviation Operations, Pacific Island Fisheries Science Center, Pacific Islands Regional Office, Deep Sea Coral Research and Technology Program, Office of National Marine Sanctuaries, National Center for Environmental Information, National Ocean Service, National Environmental Satellite, Data, and Information Service, Oceanic and Atmospheric Research, and National Marine Fisheries Service. We also thank the Schmidt Ocean Institute, the Master and crew, the Master and crew of the RV Falkor, Kiribati Observer Arenteiti Tekiau, and Expedition Chief Scientist Erik Cordes, while working in the Phoenix Islands Protected Area under PIPA Research Permit #4/17, funded by NOAA OER (#NA17OAR0110083 awarded to RR, TS, and Erik Cordes). Further thanks to the scientists on board and on shore during all voyages. DA has received funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement number 747946. DA would also like to acknowledge TBA21-Academy for providing a space for peaceful writing. CAPSTONE was completed in accordance with all regulations regarding environmental compliance and local permitting including the following permits: Kiribati Phoenix Islands Protected Area permit #1/17, Commonwealth of the Northern Mariana Islands Department of Lands and Natural Resources permit #03345; Hawai‘i Department of Land and Natural Resources permit #SAP-2016-64; Cook Islands Marae Moana Permit #05/17, National Marine Sanctuary of American Samoa permit #NMAS-2017-001; American Samoa Department of Marine and Wildlife Resources permit #2017/001; U.S. Fish and Wildlife Convention on International Trade in Endangered Species (CITES) import permit #17US36207C/9; Papahānaumokuākea Marine National Monument permit #PMN-2015-018; and Marshall Islands Ministry of Foreign Affairs #US/98-15. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the United States Government.
    Keywords: remotely operated vehicle ; CAPSTONE ; litter ; anthropogenic ; plastics ; fishing gear ; marine protected area ; national marine monument
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...