GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Biofilms-Industrial applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (308 pages)
    Edition: 1st ed.
    ISBN: 9780323905251
    Series Statement: Developments in Applied Microbiology and Biotechnology Series
    DDC: 579.17
    Language: English
    Note: Front Cover -- Application of Biofilms in Applied Microbiology -- Copyright Page -- Contents -- List of contributors -- 1 Bacterial extracellular polysaccharides in biofilm formation and function -- 1.1 Introduction -- 1.2 Exopolysaccharides associated with the matrix of biofilm -- 1.2.1 Various types of architectural polysaccharides associated with the biofilm -- 1.2.1.1 Bacterial alginates -- 1.2.1.2 Cellulose -- 1.2.1.3 Poly-N-acetyl glucose amine -- 1.2.1.4 Capsular polysaccharides -- 1.2.1.5 Levan -- 1.2.1.6 Colonic acid -- 1.2.1.7 Vibrio polysaccharide -- 1.3 Variation in structural components of bacterial EPS -- 1.4 EPS variation in gram-positive and gram-negative bacteria -- 1.4.1 Gram-positive bacteria -- 1.4.2 Gram-negative bacteria -- 1.5 Various methods of exopolysaccharide extraction from the matrix of biofilm -- 1.6 Functional attributes of EPS -- 1.6.1 Adhesion/cohesion/genetic material transfer -- 1.6.2 Symbiosis -- 1.6.3 Development of pathogenicity -- 1.6.4 Source of nutrition -- 1.6.5 Protection from antimicrobials -- 1.7 Mechanism of formation of microbial aggregates by Extracellular Polymeric Substances (EPS) -- 1.7.1 Intracellular adhesion by EPS -- 1.7.2 Conditions influencing EPS formation and action -- 1.8 Applications of EPS in biotechnology -- 1.9 Conclusion -- References -- 2 Pseudomonas putida biofilm: development and dynamics -- 2.1 Introduction -- 2.2 Biofilm formation -- 2.3 Factors affecting Pseudomonas putida biofilm -- 2.3.1 Dynamic nature -- 2.3.2 Flagella -- 2.3.3 Starvation stress -- 2.4 Genetics of Pseudomonas putida biofilm -- 2.5 Biofilm control strategies -- 2.5.1 Physical methods -- 2.5.1.1 Radiation -- 2.5.1.2 Temperature -- 2.5.1.3 Other approaches -- 2.5.2 Chemical methods -- 2.5.2.1 Aggressive chemicals -- 2.5.2.2 Quaternary ammonium compounds -- 2.5.2.3 Surfactants -- 2.5.2.4 Natural products. , 2.5.2.5 Antimicrobial peptides -- 2.5.2.6 Quorum sensing inhibitors -- 2.5.2.7 Metals -- 2.5.2.8 Nanoparticles -- 2.5.2.9 Surface coatings -- 2.5.2.10 Tolerance to chemical approaches -- 2.5.3 Biological methods -- 2.5.3.1 Bacteriophages -- 2.5.3.2 Enzyme-mediated disruption -- 2.5.3.3 Combination strategy -- 2.6 Conclusions and future perspectives -- References -- 3 Biofilm matrix proteins -- 3.1 Introduction -- 3.2 Biofilm matrix -- 3.3 Biofilm matrix proteins -- 3.4 Accumulation-associated protein -- 3.5 Rugosity and biofilm structure modulator A -- 3.6 Biofilm-associated protein -- 3.7 Biofilm-surface layer protein -- 3.8 GlcNAc-Binding protein A -- 3.9 Techniques to extract extracellular matrix from bacterial biofilms -- 3.10 Conclusion -- Acknowledgment -- Conflict of interest statement -- References -- 4 Microbial Biofilm-a modern sustainable approach for bioremediation in 21st century -- 4.1 Introduction -- 4.1.1 The nature of natural biofilms -- 4.1.2 Properties of biofilms -- 4.1.3 Types of biofilm -- 4.1.3.1 Single-species biofilm -- 4.1.3.2 Bacterial biofilm -- 4.1.3.3 Fungal biofilm -- 4.1.3.4 Algal biofilms -- 4.1.3.5 Protozoa biofilms -- 4.1.3.6 Multiple-species biofilm -- 4.2 Biofilm formation -- 4.2.1 Supports in biofilm-based processes -- 4.2.2 Reversible attachment -- 4.2.3 Irreversible attachment -- 4.2.4 Biofilm maturation -- 4.2.5 Detachment -- 4.2.6 Factors affecting biofilm development -- 4.2.6.1 Biofilm resistance -- 4.3 Application -- 4.3.1 Wastewater treatment -- 4.3.1.1 Removal of organic pollutants -- 4.3.1.2 Removal of inorganic pollutants -- 4.3.1.3 Removal of micropollutants -- 4.3.2 Biofilms for the production of industrial chemicals -- 4.3.3 Other uses of biofilms -- 4.4 Processes based on biofilm technology for wastewater treatment -- 4.4.1 Trickling filter -- 4.4.2 Rotating biological contactor microbiology. , 4.4.3 Constructed wetland system -- 4.4.4 Membrane biofilm reactors -- 4.4.5 Fluidized-bed biofilm reactors -- 4.5 Conclusion -- References -- 5 Bacillus subtilis-based biofilms -- 5.1 Introduction -- 5.1.1 Bacillus subtilis as a model organism for studying biofilm formation -- 5.1.2 Global regulators determining the physiology of subpopulations of biofilm cells -- 5.2 General model for biofilm development on substrate -- 5.3 Environmental influences on biofilm development -- 5.3.1 The genetic circuitry of Bacillus subtilis biofilm formation -- 5.4 Biofilm's research in laboratory -- 5.5 Quorum sensing and microbial biofilms -- 5.5.1 Different systems for sensing a quorum -- 5.6 Engineered Bacillus subtilis biofilms -- 5.7 The future of biofilm development research -- 5.8 Conclusion -- Acknowledgment -- References -- 6 A review on the contamination caused by bacterial biofilms and its remediation -- 6.1 Introduction -- 6.2 Steps associated in biofilm formation -- 6.3 Infections associated with biofilm formation -- 6.3.1 Device related biofilm infections -- 6.3.1.1 Dental biofilm formation -- 6.3.1.2 Contact lens -- 6.3.1.3 Central venous catheter -- 6.3.1.4 Urinary tract -- 6.3.2 Nondevice related biofilm formation -- 6.3.2.1 Periodontitis -- 6.3.2.2 Osteomyelitis -- 6.4 Few bacterial biofilm models -- 6.4.1 Escherichia coli -- 6.4.2 Bacillus subtilis -- 6.4.3 Pseudomonas aeruginosa -- 6.5 Various ways to combat bacterial biofilm formation -- 6.5.1 Usage of sorties as an antiadhesion -- 6.5.2 Removal of infected foreign bodies -- 6.5.3 Treatment of infected central venous catheter -- 6.5.4 Early detection of biofilm formation -- 6.5.5 Usage of nanoparticles for the removal of bacterial biofilm -- 6.5.6 Bactericidal surfaces -- 6.5.7 Usage of microorganism responsive magnetic nanoparticles based on silver/gentamicin for biofilm disruption. , 6.5.8 Usage of Superparamagnetic iron oxide encapsulating polymerase nanocarriers for the biofilms removal -- 6.6 Conclusion -- References -- Further reading -- 7 Pseudomonas putida biofilms -- 7.1 Introduction -- 7.2 Biofilm formation by Pseudomonas putida -- 7.2.1 Mechanism -- 7.3 Development and dispersal of mature biofilm -- 7.4 Properties of biofilms -- 7.4.1 Extracellular matrix -- 7.4.2 Quorum sensing -- 7.4.3 Biofilms are less susceptible to antimicrobial agents -- 7.5 Factors affecting biofilm formation -- 7.6 Benefits of biofilm -- 7.7 Possible eradication strategies -- 7.8 Challenges in the eradication of biofilms -- References -- 8 Mechanisms of competition in biofilm communities -- 8.1 Introduction -- 8.2 Exploitative competition -- 8.3 Interference competition -- 8.3.1 Interference mediated by the help of antimicrobial elements -- 8.3.2 Competition sensing hypothesis and quorum sensing mechanisms -- 8.3.3 Biofilm and matrix-associated changes -- 8.3.4 Fruiting bodies and microbial competition -- 8.3.5 Interference mediated by the help of contact-dependent interference -- 8.3.6 Outer membrane exchanges -- 8.3.7 Type VI secretion systems -- 8.4 Studying single and multi-species populations -- 8.5 Genetic aspects of competition -- 8.6 Models for defining different means of competition -- 8.7 Techniques for assessment of biofilm -- 8.8 Quantification and qualification for screening biofilm competition formation of biofilms for study -- 8.9 Microfluidics -- 8.10 Microscopic imaging techniques for biofilm study -- 8.11 Transcriptomics and genomics in biofilm study -- 8.12 Concluding remarks -- References -- 9 Escherichia coli biofilms -- 9.1 Introduction -- 9.2 Seeing the surface -- 9.2.1 Contacting the surface -- 9.2.2 Temporary attachments to surfaces: reversible binding. , 9.2.3 Robust adhesion to surfaces: fimbriae-mediated irreversible attachment -- 9.2.3.1 Type I fimbriae -- 9.2.3.2 Curli fimbriae -- 9.2.3.3 Conjugative pili -- 9.3 Constructing the mature biofilm -- 9.3.1 Surface biomolecules contributing to biofilm structures -- 9.3.2 Biofilm matrix components -- 9.4 Regulated formation of biofilm -- 9.4.1 Coordinated tendency to adhere to a surface -- 9.4.2 Regulatory network for primary interplay with surfaces -- 9.4.2.1 CpxAR system -- 9.4.2.2 RcsCDB system -- 9.4.2.3 EnvZ/OmpR system -- 9.4.2.4 Role of small molecules in biofilm formation -- 9.4.3 Regulation within E. coli biofilms -- 9.4.3.1 Role of central carbon flux in biofilm regulation -- 9.5 Conclusions -- Acknowledgments -- References -- 10 Role of microbial biofilms in bioremediation of organic pollutants in aquatic bodies -- 10.1 Introduction -- 10.2 Quorum sensing-dependent biofilm -- 10.3 Organic pollutants: origin and implications in aquatic bodies -- 10.3.1 Synthetic chemicals -- 10.3.1.1 Antibacterial agents -- 10.3.1.2 Parasiticides -- 10.3.1.3 Pesticides -- 10.3.2 Industrial effluents -- 10.3.2.1 Pharmaceutical industries -- 10.3.2.2 Paper mill industries -- 10.3.2.3 Pesticide industries -- 10.4 Impact of synthetic chemicals and pesticides on aquatic ecosystem -- 10.5 Microbial diversity in aquatic biofilm -- 10.6 Role of biofilm in bioaugmentation of pollutants -- 10.6.1 Assimilation of nutrients -- 10.6.2 Adsorption of contaminants -- 10.6.3 Biodegradation of contaminants -- 10.7 Mechanism of pollutant removal via use of microbial consortia -- 10.8 Constraints of biofilm-based bioremediation -- 10.9 Conclusion and future perspective -- Acknowledgment -- Conflict of interest statement -- References -- 11 Bacterial extracellular polymeric substances in biofilm matrix -- 11.1 Introduction. , 11.2 Extracellular polysaccharides as an integral part of bacterial biofilms.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Refuse and refuse disposal. ; Environment. ; Water. ; Hydrology. ; Environmental engineering. ; Biotechnology. ; Bioremediation. ; Environmental chemistry.
    Description / Table of Contents: Characterization methods for microbial communities present in contaminated soils -- Antibiotic Resistance Genes as contaminants in Industrial Waste Water Treatment -- Bacteriophages: A strategy to combat antibiotic resistance in waste water treatment plants -- The emergence of Waste Water Treatment Plant as a leading source for dissemination of Antibiotic-Resistant Gene -- Increasing Prevalence of Antibiotic-resistant genes in industrial wastewater: impact on public health -- Antibiotic resistance genes as emerging contaminants in industrial waste water treatment -- Characterization and Dynamic Shift of Microbial Communities in wastewater treatment plant.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VII, 158 p. 17 illus., 12 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9783031446184
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Environmental engineering. ; Biotechnology. ; Bioremediation. ; Refuse and refuse disposal. ; Water. ; Hydrology. ; Chemistry. ; Pollution.
    Description / Table of Contents: Bioremediation: The solution to rising pollution -- Role of microbes in cleaning the environment -- Various approaches in bioremediation process -- New advances in use of microbial culture for industrial waste treatment -- Importance of aerobic bioremediation -- Anaerobic bioremediation: types, methods and implementations -- Removal of heavy metals using bio-remedial techniques -- Use of genetic engineering in bioremediation -- Microbes in industrial waste treatment -- Bioremediation of radioactive wastes -- Application of fungi in bioremediation -- Modern enhanced In-Situ techniques of bioremediation -- Advanced role of biosurfactants -- Nanotechnology for bioremediation of industrial wastewater treatment -- Emerging pollutants from the industries and their treatment.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(IX, 526 p. 54 illus., 42 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9783031240867
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Refuse and refuse disposal. ; Water. ; Hydrology. ; Pollution. ; Environmental engineering. ; Biotechnology. ; Bioremediation. ; Nanotechnology.
    Description / Table of Contents: - Constructed Wetlands and Vermifiltration two successful alternatives of wastewater reuse: A commentary on development of these alternate strategies of wastewater treatment -- Treatment of metallurgical wastewater by a combination of zero valent iron and coagulation technology -- Valorization of sugarcane vinasse for fungal biomass protein production: Potential application as fish feed ingredient -- Emerging contaminants in wastewater: Eco-toxicity and sustainability assessment -- Membrane and disinfection technologies for industrial wastewater treatment -- Holistic approach to remediate heavy metals and radionuclides -- The Role of Nanotechnology in Bioremediation of Pollutants -- Nanobiotechnology: A Sustainable Approach for Marine Environment Bioremediation -- Cell immobilization for the fungal bioremediation of wastewater contaminated with heavy metals -- Waste Water Treatment Technologies -- Genetically Modified Microbe Mediated Metal Bioaccumulation: A Sustainable Effluent Treatment Strategy -- Nanobioremediation: Ecofriendly Approach In Pollutants Removal -- Bioremediation of Soils Polluted with Hexavalent Chromium using Bacteria -- New Bioremediation Technologies to Remove Heavy Metals and Radionuclides -- Water reuse planning, policy, monitoring requirements, and standards/criteria -- Wastewater Treatment and Reuse in Future Cities -- Inorganic nitrogen and phosphate removal from port water using microalgal biotechnology towards sustainable development -- Bioremediation of organic and heavy metal co-contaminated environments -- Algal microbial symbiotic system-From a biological process to biorefinery -- Emphasizes the role of nanotechnology in bioremediation of pollutants -- Treatment of trace organics and emerging contaminants using traditional and advanced technologies.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 526 p. 56 illus., 44 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9789819924899
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Refuse and refuse disposal. ; Environmental engineering. ; Biotechnology. ; Bioremediation. ; Water. ; Hydrology. ; Pollution.
    Description / Table of Contents: - Textile wastewater treatment: possible approaches with an emphasis on constructed wetlands -- Constructed Wetland for Metals: Removal Mechanisms and Analytical Challenges -- Role of Aerated constructed wetlands for municipal wastewater treatment -- Constructed Wetlands for remediating Organic Hydrocarbons: An approach for the sustainable environmental cleanup -- Constructed wetlands as an effective tool for textile effluent treatment -- Constructed wetland-microbial fuel cell for wastewater treatment and energy recovery: An Emerging Technology -- Aerated Constructed Wetlands for Treatment of Food Industry Wastewater -- Use of Algae in wastewater treatment -- Constructed Wetlands: The traditional system -- The need for auto-tailored wetlands for the treatment of untampered wastes of wineries and breweries -- Horizontal Subsurface Flow Constructed Wetlands for toxic pollutants removal -- Microbial consortium for the treatment of brewery effluents -Recommendation for brewery effluent treatment in constructed wetlands -- In silico integration in Environmental Remediation. .
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 263 p. 31 illus., 23 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9789819925643
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Environmental engineering. ; Biotechnology. ; Bioremediation. ; Environmental protection. ; Civil engineering. ; Water. ; Hydrology. ; Refuse and refuse disposal.
    Description / Table of Contents: Assessment of industrial wastewater for future Bio-refinery -- Sewage water as potential bio-refinery -- Municipal waste water as potential bio-refinery -- Industrial waste water as potential bio-refinery -- Industrial Wastewater treatment technologies with prospective bio-refinery -- Bio-gas as a value generation from industrial waste water -- Bio-ethanol production as a promising approach of wastewater bio-refinery -- Bio-diesel production as a promising approach of industrial wastewater bio-refinery -- Electricity generation during industrial wastewater treatment -- Nutrient recovery and utilization from wastewater for soil less agriculture -- Bio prospecting of novel and industrially relevant enzymes -- Bio-fertilizer from industrial waste water -- Techno-economic feasibility analysis process for industrial waste water bio-refinery -- Case studies on recent development of waste water bio-refinery.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VII, 496 p. 69 illus., 56 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9783031208225
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...