GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Back-arc basin  (2)
  • 204-1245B; Anhysteretic remanent magnetization; ARM Susceptibility/susceptibility ratio; DEPTH, sediment/rock; Difference; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; IRM/ARM; IRM/Susceptibility, per unit mass; Isothermal remanent magnetization, Intensity, per unit mass; Joides Resolution; Leg204; Magnetometer, cryogenic; North Pacific Ocean; Ocean Drilling Program; ODP; Ratio; Sample code/label; Susceptibility, specific  (1)
Document type
Keywords
Publisher
Years
  • 1
    ISSN: 1573-0581
    Keywords: Back-arc basin ; spreading center ; axial morphology ; Manile Bouguer Anomaly ; segmentation ; thermal modelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Central Spreading Ridge (CSR) is located in the central part of the North Fiji Basin, a complex back-arc basin created 12 Ma ago between the Pacific and Indo-Australian plates. The 3.5 Ma old CSR is the best developed, for both structure and magmatism, of all the spreading centers identified in the basin, and may be one of the largest spreading systems of the west Pacific back-arc basins. It is more than 800 km long and 50–60 km wide, and has been intensively explored during the French-Japanese STARMER project (1987–1991). The CSR is segmented into three first order segments named, from north to south, N160°, N15° and N-S according to their orientation. This segmentation pattern is similar to that found at mid-ocean ridges. The calculated spreading rate is intermediate and ranges from 83 mm/yr at 20°30′ S to 50 mm/yr at 17°S. In addition, there is a change in the axial ridge morphology and gravity structure between the northern and southern sections of the CSR. The axial morphology changes from a deep rift valley (N160° segment), to a dome split by an axial graben (N15° segment) and to a rectangular flat top high (N-S segment). The Mantle Bouguer Anomalies obtained on the northern part of the CSR (N160°/N15° segments) show “bull's eye” structures associated with mantle upwelling at the 16°50′S triple junction and also in the middle of the segments. The Mantle Bouguer Anomalies of the southern part of the ridge (N-S segment) are more homogeneous and consistent with the observed smooth topography associated with axial isostatic compensation. At these intermediate spreading rates the contrast in bathymetry and gravity structure between the segments may reflect differences in heat supply. We suggest that the N160° and N15° segments are “cold” with respect to the “hot” N-S segment. We use a non-steady-state thermal model to test this hypothesis. In this model, the accretion is simulated as a nearly steady-state seafloor spreading upon which are superimposed periodic thermal inputs. With the measured spreading rate of 50 mm/yr, a cooling cycle of 200,000 yr develops a thermal state that permits to explain the axial morphology and gravity structure observed on the N160° segment. A spreading rate of 83 mm/yr and a cooling cycle of 120,000 yr would generate the optimal thermal structure to explain the characteristics of the N-S segment. The boundaries between the “hot” N-S segment and its “cold” bounding segments are the 18°10′ S and 20°30′ S propagating rifts. A heat propagation event along the N-S segment at the expense of the adjacent colder failing segments, can explain the sharp changes in the observed morphology and structure between the segments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0581
    Keywords: Back-arc basin ; incipient seafloor spreading ; rifting ; swath bathymetry ; morphostructure ; seismic reflection ; Bransfield Basin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Bransfield Basin is a narrow and elongated active rift basin located between the Antarctic Peninsula and the South Shetland Islands. The Bransfield Basin is composed of three small basins, and two of them, the Central and Eastern Bransfield Basins, were surveyed during a recent cruise (GEBRA 93). The full swath bathymetry coverage as well as the single-channel seismic reflection and magnetic profiles that have been acquired, help us to better understand the morphostructure and recent evolution of the Bransfield Basin. Six large volcanic edifices aligned with the basin axis stick out of the sedimented seafloor of the Central Bransfield Basin. In contrast, the Eastern Bransfield Basin is characterised by four deep troughs displaying a rhombic-shape, and small, scattered volcanic cones located in the southwestern half basin. Seamount volcanism plays an important role in the formation of new crust in the Bransfield Basin. The larger seamounts of the Central Bransfield Basin are located at the intersection of the two main orthogonal sets of faults (longitudinal ENE-WSW and transversal NNW-SSE). Morphological analysis of the seamounts indicates a multi-staged volcano-tectonic construction. The distribution and shape of these edifices suggests that both volcanism and extension are concentrated at the same preferential areas through time. This might be related to the fracturation style of the continental crust. The Central and Eastern Bransfield Basins are very different in morphostructure, volcanism, and sedimentary cover. The Central Bransfield Basin shows evidence of NW-SE extensional faulting and focused active MORB-volcanism interpreted as result of incipient seafloor spreading. The Eastern Bransfield Basin is still in a rifting stage, mainly dominated by a NW-SE extension and some left-lateral strike-slip component probably related to the South Scotia Ridge.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-09
    Keywords: 204-1245B; Anhysteretic remanent magnetization; ARM Susceptibility/susceptibility ratio; DEPTH, sediment/rock; Difference; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; IRM/ARM; IRM/Susceptibility, per unit mass; Isothermal remanent magnetization, Intensity, per unit mass; Joides Resolution; Leg204; Magnetometer, cryogenic; North Pacific Ocean; Ocean Drilling Program; ODP; Ratio; Sample code/label; Susceptibility, specific
    Type: Dataset
    Format: text/tab-separated-values, 996 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...