GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-26
    Description: The analysis of multibeam bathymetry, seismic profiles, ROV dive and seafloor sampling, integrated with stratigraphic and geological data derived from subaerial field studies, provides information on the multi-stage formation and evolution of La Fossa Caldera at the active volcanic system of Vulcano (Aeolian Islands). The caldera is mostly subaerial and delimited by well-defined rims associated to three different collapse events occurred at about 80, 48–24, and 13–8 ka, respectively. The NE part of the caldera presently lies below the sea-level and is delimited by two partially degraded rim segments, encompassing a depressed and eroded area of approximately 2 km2. We present here further morphological and petrochemical evidence linking the subaerial caldera rims to its submarine counterparts. Particularly, one of the submarine rims can be directly correlated with the subaerial eastern caldera border related to the intermediate (48–24 ka) collapse event. The other submarine rim cannot be directly linked to any subaerial caldera rim, because of the emplacement of the Vulcanello lava platform during the last 2 millennia that interrupts the caldera border. However, morphological interpretation and the trachyte composition of dredged lavas allow us to associate this submarine rim with the younger (13–8 ka) caldera collapse event that truncated the trachyte-rhyolite Monte Lentia dome complex in the NW sector of Vulcano. The diachronicity of the different collapse events forming the La Fossa Caldera can also explain the morpho-structural mismatch of some hundreds of meters between the two submarine caldera rims. A small part of this offset could be also accounted by tectonic displacement along NE–SW trending lineaments breaching and dismantling the submarine portion of the caldera. A network of active erosive gullies, whose headwall arrive up to the coast, is in fact responsible of the marked marine retrogressive erosion affecting the NE part of the caldera, where remnants of intra-caldera volcanic activity are still evident. Submarine morphological features associated to the entrance of subaerial lava flow units into the sea are presented, particularly related to the construction of the La Fossa Cone and Vulcanello. More generally, this study demonstrates the utility of integrated marine and subaerial studies to unravel the volcano-tectonic evolution of active insular volcanoes.
    Description: Published
    Description: 479–492
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: 04.04. Geology ; 04.08. Volcanology ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-28
    Description: The Sciara del Fuoco (SdF) collapse scar at Stromboli is an active volcanic area affected by rapid morphological changes due to explosive/effusive eruptions and mass-wasting processes. The aim of this paper is to demonstrate the importance of an integrated analysis of multi-temporal remote sensing (photogrammetry, COSMO-SkyMed Synthetic Aperture Radar amplitude image) and marine geophysical data (multibeam and side scan sonar data) to characterize the main morphological, textural, and volumetric changes that occurred along the SdF slope in the 2020–2021 period. The analysis showed the marked erosive potential of the 19 May 2021 pyroclastic density current generated by a crater rim collapse, which mobilized a minimum volume of 44,000 m^3 in the upper Sciara del Fuoco slope and eroded 350,000–400,000 m^3 of material just considering the shallow-water setting. The analysis allowed us also to constrain the main factors controlling the emplacement of different lava flows and overflows during the monitored period. Despite the morphological continuity between the subaerial and submarine slope, textural variations in the SdF primarily depend on different processes and characteristics of the subaerial slope, the coastal area, the nearshore, and “deeper” marine areas.
    Description: Published
    Description: 4605
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Stromboli ; hazard ; active volcano ; morphological changes ; UAV flight ; remote sensing ; multibeam bathymetry ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-02
    Description: This study analyses the morphological changes induced by eruptive activity at Stromboli volcano (Italy) during and after events occurring during July–August 2019. This period was characterized by intense eruptive activity (two paroxysmal explosions, a two-month-long lava emission, and more intense and frequent “ordinary” explosive activity) that produced significant changes within the region known as Sciara del Fuoco, located on the most unstable, north-western flank of the volcano. Since September 2019, the eruptive activity waned but remained intense, and erosive phenomena continued to contribute to the re-shaping of the Sciara del Fuoco. The morphological changes described here were documented by integrating topographic (PLÉIADES satellite tri-stereo Digital Elevation Models) and multibeam bathymetric data, acquired before, during, and after the paroxysmal events. This allowed the study of the cumulative effect of the different processes and the characterization of the different phases of accumulation/emplacement, erosion, remobilization and re-sedimentation of the volcaniclastic materials. Data acquired at several periods between September 2018 and April 2020, allowed a comparison of the subaerial and submarine effects of the 2019 events. We find evidence of localized, significant erosion following the two pyroclastic density currents triggered by the paroxysmal explosion of the 3 July 2019. We interpret this erosion as being caused by submarine and subaerial landslides triggered by the propagation of pyroclastic density currents down the Sciara del Fuoco slope. Immediately after the explosion, a lava field accumulated on the sub-aerial slope, produced by effusive activity which lasted about two months. Subsequently, the newly emplaced lava, and in particular its breccia, was eroded, with the transfer of material onto the submarine slope. This work demonstrates how repeated topo-bathymetric surveys allowed identification of the slope processes that were triggered in response to the rapid geomorphological variations due to the eruptive activity. The surveys also allowed distinction of whether estimated volumetric losses were the result of single mass-flows or gradual erosive processes, with implications on the related geohazard. Furthermore, this work highlights how submarine slope failures can be triggered by the entry into the water of pyroclastic density currents, even of modest size. These results are important for the development and improvement of an early warning system for tsunami-induced by mass flows, both in Stromboli and for island-based and coastal volcanoes elsewhere, where landslides and pyroclastic density currents can trigger significant, potentially destructive, tsunami waves.
    Description: Published
    Description: 108093
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Digital Elevation Models ; PLÉIADES ; Repeated bathymetric surveys ; Volcano geomorphology ; Submarine morphology ; Stromboli ; Active volcano ; Aeolian Archipelago ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...