GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP  (2)
  • 160-970A; 160-970C; 160-970D; 160-971A; 160-971B; 160-971D; 160-971E; DRILL; Drilling/drill rig; Eastern Basin; Joides Resolution; Leg160; Ocean Drilling Program; ODP  (1)
  • PANGAEA  (3)
Document type
Keywords
Publisher
  • PANGAEA  (3)
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ikari, Matt J; Ito, Yoshihiro; Ujiie, Kohtaro; Kopf, Achim J (2015): Spectrum of slip behaviour in Tohoku fault zone samples at plate tectonic slip rates. Nature Geoscience, 8(11), 870-874, https://doi.org/10.1038/ngeo2547
    Publication Date: 2023-05-12
    Description: During the 2011 Tohoku-oki earthquake, extremely extensive coseismic slip ruptured shallow parts of the Japan Trench subduction zone and breached the sea floor^1, 2. This part of the subduction zone also hosts slow slip events (SSE)^3, 4. The fault thus seems to have a propensity for slip instability or quasi-instability that is unexpected on the shallow portions of important fault zones. Here we use laboratory experiments to slowly shear samples of rock recovered from the Tohoku-oki earthquake fault zone as part of the Japan Trench Fast Drilling Project. We find that infrequent perturbations in rock strength appear spontaneously as long-term SSE when the samples are sheared at a constant rate of about 8.5 cm yr^-1, equivalent to the plate-convergence rate. The shear strength of the rock drops by 3 to 6%, or 50 kPa to 120 kPa, over about 2 to 4 h. Slip during these events reaches peak velocities of up to 25 cm yr^-1, similar to SSE observed in several circum-Pacific subduction zones. Furthermore, the sheared samples exhibit the full spectrum of fault-slip behaviours, from fast unstable slip to slow steady creep, which can explain the wide range of slip styles observed in the Japan Trench. We suggest that the occurrence of SSE at shallow depths may help identify fault segments that are frictionally unstable and susceptible to large coseismic slip propagation.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ikari, Matt J; Kameda, Jun; Saffer, Demian M; Kopf, Achim J (2015): Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake. Earth and Planetary Science Letters, 412, 35-41, https://doi.org/10.1016/j.epsl.2014.12.014
    Publication Date: 2024-02-10
    Description: The 2011 Tohoku-Oki earthquake demonstrated that the shallowest reaches of plate boundary subduction megathrusts can host substantial coseismic slip that generates large and destructive tsunamis, contrary to the common assumption that the frictional properties of unconsolidated clay-rich sediments at depths less than View the MathML source should inhibit rupture. We report on laboratory shearing experiments at low sliding velocities (View the MathML source) using borehole samples recovered during IODP Expedition 343 (JFAST), spanning the plate-boundary décollement within the region of large coseismic slip during the Tohoku earthquake. We show that at sub-seismic slip rates the fault is weak (sliding friction µs=0.2-0.26), in contrast to the much stronger wall rocks (µs〉~0.5). The fault is weak due to elevated smectite clay content and is frictionally similar to a pelagic clay layer of similar composition. The higher cohesion of intact wall rock samples coupled with their higher amorphous silica content suggests that the wall rock is stronger due to diagenetic cementation and low clay content. Our measurements also show that the strongly developed in-situ fabric in the fault zone does not contribute to its frictional weakness, but does lead to a near-cohesionless fault zone, which may facilitate rupture propagation by reducing shear strength and surface energy at the tip of the rupture front. We suggest that the shallow rupture and large coseismic slip during the 2011 Tohoku earthquake was facilitated by a weak and cohesionless fault combined with strong wall rocks that drive localized deformation within a narrow zone.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Deyhle, Annette; Kopf, Achim J (2001): Deep fluids and ancient pore waters at the backstop: Stable isotope systematics (B, C, O) of mud-volcano deposits on the Mediterranean Ridge accretionary wedge. Geology, 29(11), 1031-1034, https://doi.org/10.1130/0091-7613(2001)029%3C1031:DFAAPW%3E2.0.CO;2
    Publication Date: 2024-01-09
    Description: Products of two mud volcanoes from the distal part of the Mediterranean Ridge accretionary complex have been investigated regarding their B, C, and O stable isotope signatures. The mud breccias have been divided into mud matrix, lithified clasts, biogenic deposits, and authigenic cements and crusts related to fluid flow and cementation. Isotope geochemistry is used to evaluate the depth of mobilization of each phase in the subduction zone. B contents and isotope ratios of the mud and mud clasts show a general trend of B enrichment and decreasing d11B values with increasing consolidation (i.e., depth). However, the majority of the clast and matrix samples relate to moderate depths of mobilization within the wedge (1-2 km below seafloor). The carbonate cements of most of these clasts as well as the authigenic crusts, however, provide evidence for a deep fluid influence, probably associated with the décollement at 5-6 km depth. This interpretation is supported by d13C ratios of the crust, which indicate precipitation of C from thermogenic methane, and by the d11B ratios of pore-water samples of mud-breccia drill cores. Clams (Vesicomya sp.) living adjacent to fluid vents have d11B and d18O values corresponding to brines known in the area, which acted as the parent solution for shell precipitation. Such brines are most likely Miocene pore waters trapped at deep levels within the backstop to the accretionary prism, probably prior to desiccation of the Mediterranean in the Messinian (6-5 Ma). Combining all results, deep fluid circulation and expulsion are identified as the main processes triggering mud liquefaction and extrusion, whereas brines contribute only locally. Given the high B contents, mud extrusion has to be considered a major backflux mechanism of B into the hydrosphere.
    Keywords: 160-970A; 160-970C; 160-970D; 160-971A; 160-971B; 160-971D; 160-971E; DRILL; Drilling/drill rig; Eastern Basin; Joides Resolution; Leg160; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...