GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanNETs  (6)
Document type
Publisher
Years
  • 1
    Publication Date: 2022-06-17
    Description: Any integration of extra carbon dioxide removal (CDR) via terrestrial or marine sink enhancement into climate policies requires accounting for their effectiveness in reducing atmospheric carbon concentration and translating this information into the amount of carbon credits (to be used in official and voluntary emission trading schemes). Here, we assess accounting schemes in their appropriateness of assigning carbon credits. We discuss the role of temporary carbon storage and present the various ccounting methods for carbon credit assignment. We explain how we have implemented the methods numerically and analyse carbon assignments across the different accounting schemes, using stylized, model-based ocean sink enhancement experiments.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-19
    Description: Net-zero climate policies foresee deployment of atmospheric carbon dioxide removal wit geological, terrestrial, or marine carbon storage. While terrestrial and geological storage would be governed under the framework of national property rights, marine storage implies that carbon is transferred from one global common, the atmosphere, to another global common, the ocean, in particular if storage exceeds beyond coastal applications. This paper investigates the option of carbon dioxide removal (CDR) and storage in different (marine) reservoir types in an analytic climate-economy model, and derives implications for optimal mitigation efforts and CDR deployment. We show that the introduction of CDR lowers net energy input and net emissions over the entire time path. Furthermore, CDR affects the Social Cost of Carbon (SCC) via changes in total economic output but leaves the analytic structure of the SCC unchanged. In the first years after CDR becomes available the SCC is lower and in later years it is higher compared to a standard climate-economy model. Carbon dioxide emissions are first higher and then lower relative to a world without CDR. The paper provides the basis for the analysis of decentralized and potentially non-cooperative CDR policies.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-31
    Description: Limiting global warming to 1.5°C requires a large-scale removal of carbon dioxide from the atmosphere. The oceans have been proposed as one possible storage option, however, not without environmental consequences. Adverse impacts on ecosystems are expected to increase in the amount of carbon stored. The question arises whether the removed carbon should be stored in a small area, e.g. a bay, or spread out across the oceans. We study this question in an analytic model with two types of ocean boxes, characterised by their carbon content. Storing a lot of carbon in the small box (a bay) may cause the local ecosystem to cross a tipping point, whereas spreading out in the large box (the rest of the ocean) may avoid this, while still causing ecosystem damages. The model gives rise to two different steady state solutions. A “destroy” steady state, where the tipping point in the small ocean box has been crossed, and a “diffuse” steady state without destruction. We analytically and numerically study the optimal amount of carbon stored, and the optimal distribution of carbon sequestration across the two boxes.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-31
    Description: Carbon accounting is essential for quantifying carbon removal and determining required offsets. The valuation goes beyond mere measurement, taking into account factors such as temporary storage and the social cost of carbon (SCC). These valuations inform the issuance of carbon offsets, but governance frameworks also play a role in their issuance. For ocean-based carbon removal methods, such as ocean iron fertilization and blue carbon projects, cost-benefit accounting supported by SCC assessments is appropriate. Challenges arise for integration compliance systems such as the EU Emissions Trading Scheme (EU ETS). To align compliance systems with carbon accounting, an intermediary institution could facilitate the purchase and resale of international offsets while managing non-permanent storage liabilities. Ocean alkalinity enhancement, among ocean-based CDR methods, may fit into net accounting if monitoring, reporting, and verification (MRV) challenges are addressed. A proposed MRV approach based on the regulation of nonpoint source pollution can address these concerns.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-31
    Description: Net-zero climate policies foresee deployment of atmospheric carbon dioxide removal wit geological, terrestrial, or marine carbon storage. While terrestrial and geological storage would be governed under the framework of national property rights, marine storage implies that carbon is transferred from one global common, the atmosphere, to another global common, the ocean, in particular if storage exceeds beyond coastal applications. This paper investigates the option of carbon dioxide removal (CDR) and storage in different (marine) reservoir types in an analytic climate-economy model, and derives implications for optimal mitigation efforts and CDR deployment. We show that the introduction of CDR lowers net energy input and net emissions over the entire time path. Furthermore, CDR affects the Social Cost of Carbon (SCC) via changes in total economic output but leaves the analytic structure of the SCC unchanged. In the first years after CDR becomes available the SCC is lower and in later years it is higher compared to a standard climate-economy model. Carbon dioxide emissions are first higher and then lower relative to a world without CDR. The paper provides the basis for the analysis of decentralized and potentially non-cooperative CDR policies.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-31
    Description: Any integration of extra carbon dioxide removal (CDR) via terrestrial or marine sink enhancement into climate policies requires accounting for their effectiveness in reducing atmospheric carbon concentration. Different accounting methods have been introduced to quantify the impacts of sink enhancements. Here, we provide a manual for the different accounting methods, accompanying the implementation of the accounting methods in a R-file which is free for download. Hence, the material allows applying the different accounting ethods and for demonstration purposes we provide a numerical example.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...