GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Report ; Hochschulschrift
    Type of Medium: Online Resource
    Pages: Online-Ressource (187 Seiten, 7 MB) , Illustrationen, Diagramme, Karten
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 276
    Language: German
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schmaljohann, Rolf; Piker, Levent; Imhoff, Johannes F (1998): The distribution of methane and hydrogen sulfide in basin sediments of the central and southern Baltic Sea. Meyniana, 50, 191-211, https://doi.org/10.2312/meyniana.1998.50.191
    Publication Date: 2024-05-21
    Description: The distribution of methane and hydrogen sulfide concentrations in sediments of various basins of the Baltic Sea was investigated during 4 cruises in 1995 and 1996. Significant differences in the concentrations of both compounds were recorded between the basins and also between different areas within the Gotland Deep. High-methane sediments with distinctly increasing concentrations from the surface to deeper layers were distinguished from low-methane sediments without a clear gradient. Methane concentrations exhibited a fair correlation with the sediment accumulation rate, determined by measuring the total thickness of the post-Ancylus Holocene sequence on echosounding profiles in the Gotland Deep. Only weak correlations were observed with the content of organic matter in the surface layers of the sediments. Hydrogen sulfide concentrations in the sediments showed a positive correlation with methane concentrations, but, in contrast to methane concentrations, were strongly influenced by the transition from oxic to anoxic conditions in the water column between 1995 and 1996. Sediments in the deepest part of the Gotland Basin (〉237 m water depth), covering an area of approximately 35 km**2, were characterized by especially high accumulation rates (〉70 cm/ka) and high methane and hydrogen sulfide contents. Concentrations of these compounds decreased rapidly towards the slope of the basin.
    Keywords: AL93; Arcona Basin, Baltic Sea; BY15A; Date; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Direction; Distance; Elevation 2; Event label; GC; GotlDeep; Gravity corer; Hydrogen sulfide; Layer thickness; Loss on ignition; Methane, sediment; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 613 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  Environmental Toxicology & Water Quality, 8 (3). pp. 299-311.
    Publication Date: 2018-03-22
    Description: Current measures of microbe‐mediated biogeochemical processes in sediments were examined for their potential use as indicators of heavy metal ecotoxicity in both river sediments and bacterial cultures. Assays were carried out with HgCl2, CuSO4, and 3CdSO4 · 8H2O added to sediment samples and bacterial cell suspensions at concentrations ranging from 0.1 to 10 mM and 0.1 μM to 1 mM, respectively. Chemoautotrophic CO2 fixation by Elbe River sediment microbiota was most sensitive to Hg2+ and Cd2+, but not to Cu2+. Among the estimates of heterotrophic productivity, incorporation of leucine into cellular protein showed clearer dose responses than incorporation of thymidine into bacterial DNA. Thymidine incorporation was highly resistant to and even stimulated by metal ions, particularly in starved and anaerobic cultures of a test strain of Vibrio anguillarum. Similar metal ion induced “overshoot” responses beyond the levels of untreated controls were noted for mineralization of 14C‐glucose by V. anguillarum and, in the case of Cd2+, also in sediment. As a less complex measure of microbial respiratory activity, succinate dehydrogenase (SDH) showed normal dose responses without stimulatory effects, as long as bacterial cell homogenates were assayed. Despite this result, it is concluded that levels of SDH in natural sediment microbiota are inevitably affected by metal‐induced processes of selection and enzyme synthesis, and would thus fail to provide an appropriate measure of metal ecotoxicity. The final conclusion is that current parameters of microbial production and activity often reveal dose responses that do not fulfill basic requirements of ecotoxicity testing in metal‐polluted sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...