GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-16
    Description: Floating ice shelves are the Achilles’ heel of the Antarctic Ice Sheet. They limit Antarctica’s contribution to global sea level rise, yet they can be rapidly melted from beneath by a warming ocean. At Filchner-Ronne Ice Shelf, a decline in sea ice formation may increase basal melt rates and accelerate marine ice sheet mass loss within this century. However, the understanding of this tipping-point behavior largely relies on numerical models. Our new multi-annual observations from five hot-water drilled boreholes through Filchner-Ronne Ice Shelf show that since 2015 there has been an intensification of the density-driven ice shelf cavity-wide circulation in response to reinforced wind-driven sea ice formation in the Ronne polynya. Enhanced southerly winds over Ronne Ice Shelf coincide with westward displacements of the Amundsen Sea Low position, connecting the cavity circulation with changes in large-scale atmospheric circulation patterns as a new aspect of the atmosphere-ocean-ice shelf system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 6373-6391, doi:10.1029/2018JC013814.
    Description: We quantify Atlantic Water heat loss north of Svalbard using year‐long hydrographic and current records from three moorings deployed across the Svalbard Branch of the Atlantic Water boundary current in 2012–2013. The boundary current loses annually on average 16 W m−2 during the eastward propagation along the upper continental slope. The largest vertical fluxes of 〉100 W m−2 occur episodically in autumn and early winter. Episodes of sea ice imported from the north in November 2012 and February 2013 coincided with large ocean‐to‐ice heat fluxes, which effectively melted the ice and sustained open water conditions in the middle of the Arctic winter. Between March and early July 2013, a persistent ice cover‐modulated air‐sea fluxes. Melting sea ice at the start of the winter initiates a cold, up to 100‐m‐deep halocline separating the ice cover from the warm Atlantic Water. Semidiurnal tides dominate the energy over the upper part of the slope. The vertical tidal structure depends on stratification and varies seasonally, with the potential to contribute to vertical fluxes with shear‐driven mixing. Further processes impacting the heat budget include lateral heat loss due to mesoscale eddies, and modest and negligible contributions of Ekman pumping and shelf break upwelling, respectively. The continental slope north of Svalbard is a key example regarding the role of ocean heat for the sea ice cover. Our study underlines the complexity of the ocean's heat budget that is sensitive to the balance between oceanic heat advection, vertical fluxes, air‐sea interaction, and the sea ice cover.
    Description: Arctic Ocean program at the FRAM-High North Research Centre for Climate and the environment; National Science Foundation (NSF) Grant Number: ARC-1264098; Polish-Norwegian Research Programme Grant Number: POL-NOR/202006/10/2013; Research Council of Norway Grant Number: 276730; Steven Grossman Family Foundation
    Keywords: Atlantic Water ; Arctic Ocean ; Heat flux ; Nansen Basin ; Boundary current ; A‐TWAIN
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...