GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inter Research  (1)
  • Wiley  (1)
  • 1
    Publication Date: 2022-01-31
    Description: Oxygen (O2) deficiency and nutrient concentrations in marine systems are impacting organisms from microbes to higher trophic levels. In coastal and enclosed seas, O2 deficiency is often related to eutrophication and high degradation rates of organic matter. To investigate the impact of O2 concentration on bacterial growth and the turnover of organic matter, we conducted multifactorial batch experiments with natural microbial communities of the central Baltic Sea. Water was collected from suboxic (〈5 µmol L -1) depths in the Gotland Basin during June 2015. Samples were kept for four days under fully oxygenated and low O2 conditions (mean: 34 µmol L-1 O2), with or without nutrient (ammonium, phosphate, nitrate) and labile carbon (glucose) amendments. We measured bacterial abundance, bacterial heterotrophic production, extracellular enzyme rates (leucine-aminopeptidase) and changes in dissolved and particulate organic carbon concentrations. Our results show that the bacterial turnover of organic matter was limited by nutrients under both oxic and low O2 conditions. In nutrient and glucose replete treatments, low O2 concentrations significantly reduced the net uptake of dissolved organic carbon and lead to higher accumulation of more labile dissolved organic matter. Our results therewith suggest that the combined effects of eutrophication and deoxygenation on heterotrophic bacterial activity may potentially favor the accumulation of dissolved organic carbon in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Microbial degradation of dissolved organic matter (DOM) contributes to the formation and preservation of oxygen minimum zones (OMZs) in the ocean, but information on the spatial distribution and molecular composition of DOM in OMZ regions is scarce. We quantified molecular components of DOM that is, dissolved amino acids (DAA) and dissolved combined carbohydrates (DCCHO), in the upwelling region off Peru. We found the highest concentrations of DCCHO in fully oxygenated surface waters steeply declining at shallow depth. The highest DAA concentrations were observed close to the surface also, but attenuation of DAA concentration over depth was less pronounced. Compositional changes of DCCHO were strongest within more oxygenated waters. Compositional changes of DAA were also evident under suboxic conditions (〈5 µmol O2 kg−1) and indicated bacterial peptide degradation. Moreover, specific free amino acids (alanine and threonine) were enhanced within suboxic waters, pointing to a potential production of dissolved organic nitrogen under suboxic conditions. Our results therewith suggest that deoxygenation supports a spatial decoupling of DCCHO and DAA production and degradation dynamics and give new insights to carbon and nitrogen cycling in the OMZ off Peru.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...