GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-14
    Description: Global Water Models (GWMs), which include Global Hydrological, Land Surface, and Dynamic Global Vegetation Models, present valuable tools for quantifying climate change impacts on hydrological processes in the data scarce high latitudes. Here we performed a systematic model performance evaluation in six major Pan-Arctic watersheds for different hydrological indicators (monthly and seasonal discharge, extremes, trends (or lack of), and snow water equivalent (SWE)) via a novel Aggregated Performance Index (API) that is based on commonly used statistical evaluation metrics. The machine learning Boruta feature selection algorithm was used to evaluate the explanatory power of the API attributes. Our results show that the majority of the nine GWMs included in the study exhibit considerable difficulties in realistically representing Pan-Arctic hydrological processes. Average APIdischarge (monthly and seasonal discharge) over nine GWMs is 〉 50% only in the Kolyma basin (55%), as low as 30% in the Yukon basin and averaged over all watersheds APIdischarge is 43%. WATERGAP2 and MATSIRO present the highest (APIdischarge 〉 55%) while ORCHIDEE and JULES-W1 the lowest (APIdischarge ≤ 25%) performing GWMs over all watersheds. For the high and low flows, average APIextreme is 35% and 26%, respectively, and over six GWMs APISWE is 57%. The Boruta algorithm suggests that using different observation-based climate data sets does not influence the total score of the APIs in all watersheds. Ultimately, only satisfactory to good performing GWMs that effectively represent cold-region hydrological processes (including snow-related processes, permafrost) should be included in multi-model climate change impact assessments in Pan-Arctic watersheds.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.48 ; Global Water Models ; Model performance ; Model evaluation ; Arctic watersheds ; Boruta feature selection
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Temperature targets of the Paris Agreement limit global net cumulative emissions to very tight carbon budgets. The possibility to overshoot the budget and offset near-term excess emissions by net-negative emissions is considered economically attractive as it eases near-term mitigation pressure. While potential side effects of carbon removal deployment are discussed extensively, the additional climate risks and the impacts and damages have attracted less attention. We link six models for an integrative analysis of the climatic, environmental and socio-economic consequences of temporarily overshooting a carbon budget consistent with the 1.5 °C temperature target along the cause-effect chain from emissions and carbon removals to climate risks and impact. Global climatic indicators such as CO2-concentration and mean temperature closely follow the carbon budget overshoot with mid-century peaks of 50 ppmv and 0.35 °C, respectively. Our findings highlight that investigating overshoot scenarios requires temporally and spatially differentiated analysis of climate, environmental and socioeconomic systems. We find persistent and spatially heterogeneous differences in the distribution of carbon across various pools, ocean heat content, sea-level rise as well as economic damages. Moreover, we find that key impacts, including degradation of marine ecosystem, heat wave exposure and economic damages, are more severe in equatorial areas than in higher latitudes, although absolute temperature changes being stronger in higher latitudes. The detrimental effects of a 1.5 °C warming and the additional effects due to overshoots are strongest in non-OECD countries (Organization for Economic Cooperation and Development). Constraining the overshoot inflates CO2 prices, thus shifting carbon removal towards early afforestation while reducing the total cumulative deployment only slightly, while mitigation costs increase sharply in developing countries. Thus, scenarios with carbon budget overshoots can reverse global mean temperature increase but imply more persistent and geographically heterogeneous impacts. Overall, the decision about overshooting implies more severe trade-offs between mitigation and impacts in developing countries.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...