GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0738
    Keywords: Key words BM 17.0744 ; β-Oxidation pathway ; Peroxisomes ; Peroxisome proliferators ; Species differences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract BM 17.0744, a new anti-diabetic and lipid-lowering agent, leads also to strong hepatomegaly and carnitine acetyl transferase (CAT) increase in the liver of rats, a phenomenon known from fibrates. For information on the relevance of changes in liver of rats to other species, we investigated the effects of BM 17.0744 on lipids and selected marker enzymes related to β-oxidation in rats, dogs and guinea-pigs, so-called high and low responders to peroxisome proliferators. To examine selectivity other enzymes were also determined, e.g. esterase, urate oxidase (UOX) and cytochrome c oxidase (CYT.C.OX.). Lowering of triglycerides and cholesterol in blood serum and/or liver was observed in pharmacological dose range in the three species tested. In dogs and guinea-pigs, liver and kidney weights were unaffected even in dogs in medium and high dose groups with high systemic exposure and severe toxicity. In male Sprague-Dawley rats treatment with 1.5, 3, 6 and 12.5 mg/kg per day BM 17.0744 selectively elevated the activities of CAT and acyl-CoA oxidase (AOX) by ≤200 and 20-fold, respectively. Administration of BM 17.0744 to Beagle dogs (1.5, 4, 12 mg/kg per day) and guinea-pigs (3 and 12 mg/kg per day) enhanced the activities of CAT and AOX dose-dependently by a factor of two to three only. Immunoblotting revealed a drug-specific enhancement of the amount of β-oxidation enzymes in rats, which is in accord with the rapid and coordinated transcriptional activation shown in Northern dot blot analysis. Nuclear run-on assays demostrated a real transcriptional activation. BM 17.0744 activates peroxisome proliferator-activated receptor α (PPARα), which could be shown by transactivation assays. The stimulation of PPARα by BM 17.0744 was stronger than that of the known ligands WY 14.643 and ETYA. Activation of PPARγ can be excluded. Taken collectively, the data demonstrate an enhancement of the β-oxidation system by BM 17.0744 paralleled by lipid-lowering in all species investigated. The activation of the nuclear factor PPARα may explain the changes in liver and the metabolic effects on the molecular level. The lack of an increase in liver and kidney weights and the relatively moderate enhancement of activities of β-oxidation-related enzymes in dogs and guinea-pigs indicate that the excessive response observed in rats is not applicable to other, predominantly non-rodent, species. On the basis of these data and the experience with fibrates a specific risk for humans is not expected.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 556, pp. 45-57, ISSN: 0171-8630
    Publication Date: 2017-01-31
    Description: Stones released by melting icebergs are called dropstones, and these stones constitute island-like hard-bottom habitats at high latitudes. In 2012, dropstone megafauna in the HAUSGARTEN observatory in the Fram Strait was sampled photographically. We tested the hypothesis that dropstones would have the same species distribution patterns as terrestrial islands, using 5 patterns commonly found in the classical island literature. Higher richness, diversity, and abundance of fauna occurred on larger stones and on stones near a deep-water rocky reef. These patterns can be explained by the greater surface area of larger stones, the exposure of larger stones to faster current higher in the benthic boundary layer, and increased larval supply from the rocky reef. Some pairs of morphotypes (12 pairs out of 56 morphotypes and 1540 possible pairs) co-occurred less often than expected by chance. While similar patterns have been attributed to interspecific competition in the classical island literature, we offer alternative mechanisms for dropstones. Non-random co-occurrence on dropstones may be explained by larval dispersal. Dropstone fauna had an overdispersed (clumped) distribution, so pairs of morphotypes may have negative non-random co-occurrence simply because short larval life and limited dispersal ability prevent them from having randomly overlapping distributions. In addition, we found 8 morphotype pairs that co-occurred more often than expected by chance because of epibiontism. The patterns found in dropstone communities resemble terrestrial islands, but different mechanisms may be responsible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...