GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GSA, Geological Society of America  (1)
  • Instituto Oceanográfico da Universidade de São Paulo, SciELO  (1)
  • 1
    facet.materialart.
    Unknown
    Instituto Oceanográfico da Universidade de São Paulo, SciELO
    In:  Brazilian Journal of Oceanography, 65 (1). pp. 19-28.
    Publication Date: 2020-02-06
    Description: The carbon regeneration in the water column of the Cariaco Basin (Venezuela) was investigated using a regression model of total alkalinity (TA) and the concentration of total inorganic carbon (TCO2). Primary productivity (PP) was determined from the inorganic carbon fraction assimilated by phytoplankton and the variation of the 22 and 23ºC isotherm was used as an indicator of coastal upwelling. The results indicate that CO2 levels were lowest (1962 µmol/kg) at the surface and increased to 2451 µmol/kg below the oxic-anoxic redox interface. The vertical regeneration distribution of carbon was dominated (82%) by organic carbon originating from the soft tissue of photosynthetic organisms, whereas 18% originated from the dissolution of biogenic calcite. The regeneration of organic carbon was highest in the surface layer in agreement with the primary productivity values. However, at the oxic-anoxic interface a second more intense maximum was detected (70-80%), generated by chemotrophic respiration of organic material by microorganisms. The percentages in the anoxic layers were lower than in the oxic zone because aerobic decomposition occurs more rapidly than anaerobic respiration of organic material because more labile fractions of organic carbon have already been mineralized in the upper layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GSA, Geological Society of America
    In:  Geology, 45 (3). pp. 275-278.
    Publication Date: 2020-02-06
    Description: Marine sediments contribute significantly to global element cycles on multiple time scales. This is due in large part to microbial activity in the shallower layers and abiotic reactions resulting from increasing temperatures and pressures at greater depths. Quantifying the rates of these diagenetic changes requires a three-dimensional description of the physiochemical properties of marine sediments. In a step toward reaching this goal, we have combined global data sets describing bathymetry, heat conduction, bottom-water temperatures, and sediment thickness to quantify the three-dimensional distribution of temperature in marine sediments. This model has revealed that ∼35% of sediments are above 60 °C, conditions that are suitable for petroleum generation. Furthermore, significant microbial activity could be inhibited in ∼25% of marine sediments, if 80 °C is taken as a major thermal barrier for subsurface life. In addition to a temperature model, we have calculated new values for the total volume (3.01 × 108 km3) and average thickness (721 m) of marine sediments, and provide the only known determination of the volume of marine-sediment pore water (8.46 × 107 km3), equivalent to ∼6.3% of the volume of the ocean. The results presented here can be used to help quantify the rates of mineral transformations, lithification, catagenesis, and the extent of life in the subsurface on a global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...