GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Gel particles—a class of abundant transparent organic particles—have increasingly gathered attention in marine research. Field studies on the bacterial colonization of marine gels however are still scarce. So far, most studies on respective particles have focused on the upper ocean, while little is known on their occurrence in the deep sea. Here, we report on the vertical distribution of the two most common gel particle types, which are polysaccharide-containing transparent exopolymer particles (TEP) and proteinaceous Coomassie stainable particles (CSP), as well as numbers of bacteria attached to gel particles throughout the water column, from the surface ocean down to the bathypelagial (〈 3,000 m). Our study was conducted in the Arctic Fram Strait during northern hemispheres' summer in 2015. Besides data on the bacterial colonization of the two gel particle types (TEP and CSP), we present bacterial densities on different gel particle size classes according to 12 different sampling depths at four sampling locations. Gel particles were frequently abundant at all sampled depths, and their concentrations decreased from the euphotic zone to the dark ocean. They were colonized by bacteria at all sampled water depths with risen importance at the deepest water layers, where fractions of bacteria attached to gel particles (%) increased within the total bacterial community. Due to the omnipresent bacterial colonization of gel particles at all sampled depths in our study, we presume that euphotic production of this type of organic matter may affect microbial species distribution within the whole water column in the Fram Strait, down to the deep sea. Our results raise the question if changes in the bacterial community composition and functioning on gel particles occur over depth, which may affect microbial respiration and remineralization rates of respective particles in different water layers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: In the present study, we profiled bacterial and archaeal communities from 13 phylogenetically diverse deep-sea sponge species (Demospongiae and Hexactinellida) from the South Pacific by 16S rRNA-gene amplicon sequencing. Additionally, the associated bacteria and archaea were quantified by real-time qPCR. Our results show that bacterial communities from the deep-sea sponges are mostly host-species specific similar to what has been observed for shallow-water demosponges. The archaeal deep-sea sponge community structures are different from the bacterial community structures in that they are almost completely dominated by a single family, which are the ammonia-oxidizing genera within the Nitrosopumilaceae. Remarkably, the archaeal communities are mostly specific to individual sponges (rather than sponge-species), and this observation applies to both hexactinellids and demosponges. Finally, archaeal 16s gene numbers, as detected by quantitative real-time PCR, were up to three orders of magnitude higher than in shallow-water sponges, highlighting the importance of the archaea for deep-sea sponges in general.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Deep-sea sponge grounds are underexplored ecosystems that provide numerous goods and services to the functioning of the deep-sea. This study assessed the prokaryotic diversity in embryos, recruits, and adults of Craniella zetlandica and Craniella infrequens, common and abundant representatives of deep-sea sponge grounds in the North Atlantic. Our results reveal that symbiont transmission in the two Craniella sponge species likely occurs vertically, as highly similar microbial consortia have been identified in adults, embryos, and recruits. Moreover, transmission electron microscopy revealed high abundances of sponge-associated microorganisms, among which Chloroflexi (SAR202) were identified as common representatives by amplicon sequencing and fluorescence in situ hybridization (FISH). Equal diversity metrices, a similar overall prokaryotic community composition and a distinct dominance of the phylum Chloroflexi within all life stages are the key findings of our analyses. Information such as presented here provide understanding on the recruitment of deep-sea sponge holobionts which is needed to develop integrated management tools of such vulnerable marine ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Most animals, including sponges (Porifera), have species-specific microbiomes. Which genetic or environmental factors play major roles structuring the microbial community at the intraspecific level in sponges is, however, largely unknown. In this study, we tested whether geographic location or genetic structure of conspecific sponges influences their microbial assembly. For that, we used three sponge species with different rates of gene flow, and collected samples along their entire distribution range (two from the Mediterranean and one from the Southern Ocean) yielding a total of 393 samples. These three sponge species have been previously analysed by microsatellites or single nucleotide polymorphisms, and here we investigate their microbiomes by amplicon sequencing of the microbial 16S rRNA gene. The sponge Petrosia ficiformis, with highly isolated populations (low gene flow), showed a stronger influence of the host genetic distance on the microbial composition than the spatial distance. Host-specificity was therefore detected at the genotypic level, with individuals belonging to the same host genetic cluster harbouring more similar microbiomes than distant ones. On the contrary, the microbiome of Ircinia fasciculata and Dendrilla antarctica - both with weak population structure (high gene flow) - seemed influenced by location rather than by host genetic distance. Our results suggest that in sponge species with high population structure, the host genetic cluster influence the microbial community more than the geographic location.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Hexactinellid sponges are common in the deep sea, but their functional integration into those ecosystems remains poorly understood. The phylogenetically related species Schaudinnia rosea and Vazella pourtalesii were herein incubated for nitrogen and phosphorous, returning markedly different nutrient fluxes. Transmission electron microscopy (TEM) revealed S. rosea to host a low abundance of extracellular microbes, while Vazella pourtalesii showed higher microbial abundance and hosted most microbes within bacteriosyncytia, a novel feature for Hexactinellida. Amplicon sequences of the microbiome corroborated large between-species differences, also between the sponges and the seawater of their habitats. Metagenome-assembled genome of the V. pourtalesii microbiota revealed genes coding for enzymes operating in nitrification, denitrification, dissimilatory nitrate reduction to ammonium, nitrogen fixation, and ammonia/ammonium assimilation. In the nitrification and denitrification pathways some enzymes were missing, but alternative bridging routes allow the microbiota to close a N cycle in the holobiont. Interconnections between aerobic and anaerobic pathways may facilitate the sponges to withstand the low-oxygen conditions of deep-sea habitats. Importantly, various N pathways coupled to generate ammonium, which, through assimilation, fosters the growth of the sponge microbiota. TEM showed that the farmed microbiota is digested by the sponge cells, becoming an internal food source. This microbial farming demands more ammonium that can be provided internally by the host sponges and some 2.6 million kg of ammonium from the seawater become annually consumed by the aggregations of V. pourtalesii. Such ammonium removal is likely impairing the development of the free-living bacterioplankton and the survival chances of other sponge species that feed on bacterioplankton. Such nutritional competitive exclusion would favor the monospecific character of the V. pourtalesii aggregations. These aggregations also affect the surrounding environment through an annual release of 27.3 million kg of nitrite and, in smaller quantities, of nitrate and phosphate. The complex metabolic integration among the microbiota and the sponge suggests that the holobiont depends critically on the correct functioning of its N-driven microbial engine. The metabolic intertwining is so delicate that it changed after moving the sponges out of their habitat for a few days, a serious warning on the conservation needs of these sponge aggregations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Marine sponges are known for their complex and stable microbiomes. However, the lack of a gnotobiotic sponge-model and experimental methods to manipulate both the host and the microbial symbionts currently limit our mechanistic understanding of sponge-microbial symbioses. We have used the North Atlantic sponge species Halichondria panicea to evaluate the use of antibiotics to generate gnotobiotic sponges. We further asked whether the microbiome can be reestablished via recolonization with the natural microbiome. Experiments were performed in marine gnotobiotic facilities equipped with a custom-made, sterile, flow-through aquarium system. Bacterial abundance dynamics were monitored qualitatively and quantitatively by 16 S rRNA gene amplicon sequencing and qPCR, respectively. Antibiotics induced dysbiosis by favouring an increase of opportunistic, antibiotic-resistant bacteria, resulting in more complex, but less specific bacteria-bacteria interactions than in untreated sponges. The abundance of the dominant symbiont, Candidatus Halichondribacter symbioticus, remained overall unchanged, reflecting its obligately symbiotic nature. Recolonization with the natural microbiome could not reverse antibiotic-induced dysbiosis. However, single bacterial taxa that were transferred, successfully recolonized the sponge and affected bacteria-bacteria interactions. By experimentally manipulating microbiome composition, we could show the stability of a sponge-symbiont clade despite microbiome dysbiosis. This study contributes to understanding both host-bacteria and bacteria-bacteria interactions in the sponge holobiont.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The deep-sea is vast, remote, and largely underexplored. However, methodological advances in environmental DNA (eDNA) surveys could aid in the exploration efforts, such as using sponges as natural eDNA filters for studying fish biodiversity. In this study, we analyzed the eDNA from 116 sponge tissue samples and compared these to 18 water eDNA samples and visual surveys obtained on an Arctic seamount. Across survey methods, we revealed approximately 30% of the species presumed to inhabit this area and 11 fish species were detected via sponge derived eDNA alone. These included commercially important fish such as the Greenland halibut and Atlantic mackerel. Fish eDNA detection was highly variable across sponge samples. Highest detection rates were found in sponges with low microbial activity such as those from the class Hexactinellida. The different survey methods also detected alternate fish communities, highlighted by only one species overlap between the visual surveys and the sponge eDNA samples. Therefore, we conclude that sponge eDNA can be a useful tool for surveying deep-sea demersal fish communities and it synergises with visual surveys improving overall biodiversity assessments. Datasets such as this can form comprehensive baselines on fish biodiversity across seamounts, which in turn can inform marine management and conservation practices in the regions where such surveys are undertaken.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Sponges possess exceptionally diverse associated microbial communities and play a major role in (re)cycling of dissolved organic matter (DOM) in marine ecosystems. Linking sponge-associated community structure with DOM utilization is essential to understand host-microbe interactions in the uptake, processing, and exchange of resources. We coupled, for the first time, DNA-stable isotope probing (DNA-SIP) with 16S rRNA amplicon sequencing in a sponge holobiont to identify which symbiotic bacterial taxa are metabolically active in DOM uptake. Parallel incubation experiments with the sponge Plakortis angulospiculatus were amended with equimolar quantities of unlabelled (C-12) and labelled (C-13) DOM. Seven bacterial amplicon sequence variants (ASVs), belonging to the phyla PAUC34f, Proteobacteria, Poribacteria, Nitrospirae, and Chloroflexi, were identified as the first active consumers of DOM. Our results support the predictions that PAUC34f, Poribacteria, and Chloroflexi are capable of organic matter degradation through heterotrophic carbon metabolism, while Nitrospirae may have a potential mixotrophic metabolism. We present a new analytical application of DNA-SIP to detect substrate incorporation into a marine holobiont with a complex associated bacterial community and provide new experimental evidence that links the identity of diverse sponge-associated bacteria to the consumption of DOM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The collection of zooplankton swimmers and sinkers in time-series sediment traps provides unique insight into year-round and interannual trends in zooplankton population dynamics. These samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice-covered season are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180–280, 800–1320, and 2320–2550 m, over a period of 16 yr (2000–2016) at the Long-Term Ecological Research observatory HAUSGARTEN located in the eastern Fram Strait (79°N, 4°E). The time-series data showed seasonal and interannual trends within the dominant zooplankton groups including copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha. Amphipoda and copepoda dominated the abundance of swimmers while pteropoda and foraminifera were the most important sinkers. Although the seasonal occurrence of these groups was relatively consistent between years, there were notable interannual variations in abundance, suggesting the influence of various environmental conditions such as sea-ice dynamic and lateral advection of water masses, for example, meltwater and Atlantic water. Statistical analyses revealed a correlation between the Arctic dipole climatic index and sea-ice dynamics (i.e., ice coverage and concentration), as well as the importance of the distance from the ice edge on swimmer composition patterns and carbon export.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-07-03
    Description: Gel particles—a class of abundant transparent organic particles—have increasingly gathered attention in marine research. Field studies on the bacterial colonization of marine gels however are still scarce. So far, most studies on respective particles have focused on the upper ocean, while little is known on their occurrence in the deep sea. Here, we report on the vertical distribution of the two most common gel particle types, which are polysaccharide-containing transparent exopolymer particles (TEP) and proteinaceous Coomassie stainable particles (CSP), as well as numbers of bacteria attached to gel particles throughout the water column, from the surface ocean down to the bathypelagial (〈 3,000 m). Our study was conducted in the Arctic Fram Strait during northern hemispheres' summer in 2015. Besides data on the bacterial colonization of the two gel particle types (TEP and CSP), we present bacterial densities on different gel particle size classes according to 12 different sampling depths at four sampling locations. Gel particles were frequently abundant at all sampled depths, and their concentrations decreased from the euphotic zone to the dark ocean. They were colonized by bacteria at all sampled water depths with risen importance at the deepest water layers, where fractions of bacteria attached to gel particles (%) increased within the total bacterial community. Due to the omnipresent bacterial colonization of gel particles at all sampled depths in our study, we presume that euphotic production of this type of organic matter may affect microbial species distribution within the whole water column in the Fram Strait, down to the deep sea. Our results raise the question if changes in the bacterial community composition and functioning on gel particles occur over depth, which may affect microbial respiration and remineralization rates of respective particles in different water layers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...