GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, P., Pickart, R. S., Fissel, D., Ross, E., Kasper, J., Bahr, F., Torres, D. J., O'Brien, J., Borg, K., Melling, H., & Wiese, F. K. Circulation in the vicinity of Mackenzie Canyon from a year-long mooring array. Progress in Oceanography, 187, (2020): 102396, doi:10.1016/j.pocean.2020.102396.
    Description: Data from a five-mooring array extending from the inner shelf to the continental slope in the vicinity of Mackenzie Canyon, Beaufort Sea are analyzed to elucidate the components of the boundary current system and their variability. The array, part of the Marine Arctic Ecosystem Study (MARES), was deployed from October 2016 to September 2017. Four distinct currents were identified: an eastward-directed flow adjacent to the coast; a westward-flowing, surface-intensified current centered on the outer-shelf; a bottom-intensified shelfbreak jet flowing to the east; and a recirculation at the base of the continental slope within the canyon. The shelf current transports −0.120.03 Sv in the mean and is primarily wind-driven. The response is modulated by the presence of ice, with little-to-no signal during periods of nearly-immobile ice cover and maximum response when there is partial ice cover. The shelfbreak jet transports 0.030.02 Sv in the mean, compared to 0.080.02 Sv measured upstream in the Alaskan Beaufort Sea over the same time period. The loss of transport is consistent with a previous energetics analysis and the lack of Pacific-origin summer water downstream. The recirculation in the canyon appears to be the result of local dynamics whereby a portion of the westward-flowing southern limb of the Beaufort Gyre is diverted up the canyon across isobaths. This interpretation is supported by the fact that the low-frequency variability of the recirculation is correlated with the wind-stress curl in the Canada Basin, which drives the Beaufort gyre.
    Description: The authors are indebted to Fisheries and Oceans Canada for building the logistics for MARES into the at-sea missions of the Integrated Beaufort Observatory. We are grateful to the captain and crew of the CCGS Sir Wilfred Laurier for ably deploying and recovering the MARES array. Marshall Swartz assisted with the cruise preparation logistics. We thank the two anonymous reviewers for their input which helped improve the paper. This project was funded by the US Bureau of Ocean Energy Management (BOEM), on behalf of the National Ocean Partnership Program. The Canadian contribution was supported by the Environmental Studies Research Fund (ESRF Project 2014-02N). MARES publication 003.
    Keywords: Canadian Beaufort Sea ; Mackenzie Canyon ; Boundary currents ; Canyon circulation ; Ice-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-09-14
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in van Haren, H., Voet, G., Alford, M., & Torres, D. Internal wave breaking near the foot of a steep East-Pacific continental slope. Progress In Oceanography, 205, (2022): 102817, https://doi.org/10.1016/j.pocean.2022.102817.
    Description: The sloping sides of ocean basins are of particular interest for their potential importance for considerable turbulence generation via internal wave breaking and associated water circulation. The difference with the ocean interior may be manifest in a 10–100 m relatively thin layer above the seafloor. We set up an observational study with high-resolution stand-alone instrumentation attached to a custom-made release-anchor frame sampling to within 0.5 m from the seafloor up to 150 m above it. For two months, the taut wire moored instrumentation was tested in 1100 m water depth of the East-Pacific, off the coast of San Diego (CA, USA). The mooring was oceanward of an underwater bank and near the foot of its steep but gentle two-dimensional slope. Temperature sensor data demonstrate that internal waves peak at semidiurnal frequencies. While short (〈1 h) periods show complicated structure, tidally averaged turbulence dissipation rate monotonically increases towards the seafloor over two orders of magnitude. The largest turbulence dissipation rates are observed during the relatively warm phase of an internal wave. Although the local topographic slope is supercritical for semidiurnal internal waves, turbulent bores propagating up the slope and hydraulic jumps are not observed. Most of the turbulence appears to be dominated by shear production, but not related to steady frictional flow near the seafloor.
    Description: This work has been partially funded from NSF-grant OCE-1756264.
    Keywords: Pacific Ocean ; Sloping topography ; High-resolution instrumentation ; Internal wave breaking ; High turbulence intensity near seafloor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...