GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (5)
  • 1
    Publication Date: 2020-10-16
    Description: Dikes and sills are the moving building blocks of the plumbing system of volcanoes and play a fundamental role in the accretionary processes of the crust. They nucleate, propagate, halt, resume propagation, and sometimes change trajectory with drastic implications for the outcome of eruptions (Sigmundsson et al., 2010). Their dynamics is still poorly understood, in particular when different external influencing factors are interacting. Here we apply a boundary element model to study dike and sill formation, propagation and arrest in different scenarios. We model dikes as finite batches of compressible fluid magma, propagating quasi-statically in an elastic medium, and calculate their trajectories by maximising the energy release of the magma-rock system. We consider dike propagation in presence of density layering, of density plus rigidity layering, of a weakly welded interface between layers, under the action of an external stress field (of tectonic or topographic origin). Our simulations predict sill formation in several situations: i) when a horizontal weak interface is met by a propagating dike; ii) when a sufficiently high compressive tectonic environment is experienced by the ascending dike and iii) in case a dike, starting below a volcanic edifice, propagates away from the topographic load with a low dip angle. We find that dikes halt and stack when they become negatively buoyant and when they propagate with low overpressure at their upper tip toward a topographic load. Neutral buoyancy by itself cannot induce dikes to turn into sills, as previously suggested.
    Description: Published
    Description: 39-50
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-16
    Description: Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we show with numerical models that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observations. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control: 1) the shallow accumulation of magma in stacked sills, consistently with observations; 2) the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures.
    Description: Published
    Description: 257-293
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-15
    Description: Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety oftectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.
    Description: Published
    Description: 62-70
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-27
    Description: Volcanism in continental rifts is generally observed to shift over time from the inside of the basin to its flanks and vice versa, but the controls on these switches are still unclear. Here we use numerical simulations of dike propagation to test the hypothesis that the spatio-temporal evolution of rift volcanism is controlled by the crustal stresses produced during the development of the rift basin. We find that the progressive deepening of a rift rotates the direction of the principal stresses under the basin, deflecting ascending dikes. This causes an early shift of volcanism from the inside of the graben to its flanks. The intensification of this stress pattern, due to further deepening of the basin, promotes the formation of lower crustal sill-like intrusions that can stack under the rift, shallowing the depth at which dikes nucleate, eventually causing a late stage of in-rift axial volcanism. Given the agreement between our model results and observations, we conclude that the temporal shifts in the location of rift volcanism are controlled to first order by the elastic stresses developing in the crust as the rift matures. We thereby suggest that geodynamic models should account for elasticity and the redistribution of surface loads in order to effectively reproduce rift-related magmatism.
    Description: Published
    Description: 118593
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-31
    Description: Precise characterization of the mechanical properties of gelatin, a classic analog of the elastic crust, is necessary for scaling the mechanical models of the Earth's crust behavior in laboratory experiments. Here we reassess how to accurately calculate the Young modulus (E) of gelatin contained in experimental tanks. By means of dedicated analog experiments and finite element simulations, we estimate the bias introduced by using equations appro­ priate for a half-space to interpret the subsidence due to a cylindrical surface load applied on the gelatin. In the case of a standard experimental setup with gelatin adhering to the tank wall, we find E is overestimated by at least 5% for a box with lateral size smaller than 20 times the cylinder diameter. In addition, we deduce a correction factor to be applied when using an analytical formula. We confirm that measuring the shear velocity leads to accurate estimates for the rigidity of gelatin. We also propose a new method for in situ Young's modulus estimation, relying on the length of air-filled propagating crack. Indeed, for a given injected volume, this length depends only on the density contrast between air and gelatin and on the Young's modulus of the gelatin. The fracture toughness of the gelatin is estimated independently. Direct comparison between fracture toughness and Young's modulus shows that for a given Young's modulus, salted gelatin has a higher fracture toughness than unsalted gelatin.
    Description: Published
    Description: 228901
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...