GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1165
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Description / Table of Contents: Abstract Combined hydrochemical, geochemical and isotopic investigations of solid and dissolved sulphur- and carbon-species from different aquifer levels allow to distinguish two geochemical cycles: The first one is represented by the sedimentary pyrites which have been formed during the Tertiary by bacterial sulplate reduction. These pyrites are characterized by strongly depleted δ 14 S-signatures. In accordance with a recent origin, the groundwater composition reflects the current sulphur- and carbon-cycling representing the second one. The activity of sulphate reducing bacterian can be deduced from a decrease of the sulphate concentration with depth and a simultaneous increase in δ 14 S- and δ 18 O-values as well as increasing hydrogen sulphide concentrations. Dissolved organic carbon, the substrate and electron-donor for the bacterial sulphate reduction, appears to be the limiting factor as its average concentration reaches only 1.6 mg/l. The concentration of dissolved inorganic carbon is slightly higher in the deeper groundwater levels. Due to its clearly negative carbon-isotope signature it can be identified as a product of biogenic oxidation of organic material.
    Notes: Kurzfassung Durch den kombinierten Einsatz von isotopengeochemischen und hydrochemischen Untersuchungsmethoden an Sedimenten und Grundwässern der Niederrheinischen Bucht können die in den Aquiferen vorhandenen festen und gelösten Schwefel- und Kohlenstoff-Verbindungen zwei zeitlich getrennten Stoffkreisläufen zugeordnet werden. Während die sedimentären Pyrite, die dominierende Schwefelverbindung innerhalb der marinen Sande, durchschnittlich stark an 34 S verarmt sind und bereits im Tertiär gebildet wurden, läßt sich aus den gelösten Wasserinhaltsstoffen der jungen Grundwässer auf den rezenten Schwefel- und Kohlenstoff-Kreislauf schließen. In den unteren anaeroben Grundwasserstockwerken der durch Braunkohleeinschaltungen gegliederten Sande kann die Aktivität sulfatreduzierter Bakterien durch die Abnahme der Sulfatkonzentration bei gleichzeitigem Anstieg der zugehörigen δ 14 S- und δ 18 O-Werte im Sinne einer Rayleigh-Fraktionierung sowie durch erhöhte Schwefelwasserstoffkonzentration belegt werden. Gelöster organischer Kohlenstoff, der als Elektronendonator für die bakterielle Sulfatreduktion dient, ist mit durchschnittlich 1,6 mg/l vermutlich der limitierende Faktor dieses Prozesses. Gelöster anorganischer Kohlenstoff tritt in den tieferen Grundwasserstockwerken in leicht erhöhten Konzentrationen auf und kann aufgrund seiner deutlich negativ Kohlenstoff-Isotopensignatur als Produkt der Oxidation organischer Substanz identifiziert werden.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Highlights • The genetic model for Algoma-type BIF is modified taking into account S-MIF results. • Metal and sulfur sources are decoupled and reflect diverse microbial metabolisms. • Sulfur deposited with oxide-facies BIF is mostly atmospheric in origin. • Little juvenile sulfur is found, despite the proximity to volcanic sources. Abstract Neoarchean Algoma-type banded iron formations (BIFs) are widely viewed as direct chemical precipitates from proximal volcanic–hydrothermal vents. However, a systematic multiple sulfur isotope study of oxide-facies BIF from a type locality in the ca. 2.74 Ga Temagami greenstone belt reveals mainly bacterial turnover of atmospheric elemental sulfur in the host basin rather than deposition of hydrothermally cycled seawater sulfate or sulfur from direct volcanic input. Trace amounts of chromium reducible sulfur that were extracted for quadruple sulfur isotope (32S–33S–34S–36S) analysis record the previously known mass-independent fractionation of volcanic SO2 in the Archean atmosphere (S-MIF) and biological sulfur cycling but only minor contributions from juvenile sulfur, despite the proximity of volcanic sources. We show that the dominant bacterial metabolisms were iron reduction and sulfur disproportionation, and not sulfate reduction, consistent with limited availability of organic matter and the abundant ferric iron deposited as Fe(OH)3. That sulfur contained in the BIF was not a direct volcanic–hydrothermal input, as expected, changes the view of an important archive of the Neoarchean sulfur cycle in which the available sulfur pools were strongly decoupled and only species produced photochemically under anoxic atmospheric conditions were deposited in the BIF-forming environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Elemental sulfur is commonly regarded as the product of oxidative sulfur cycling in the sediment. However, reports on the occurrence of elemental sulfur in seepage areas are few and thus its origin and mechanisms controlling its distribution are insufficiently understood. Here, we analyzed the multiple sulfur isotopic compositions for elemental sulfur and pyrite from an iron-dominated gas hydrate-bearing sedimentary environment of the South China Sea to unravel the impact of sulfate-driven anaerobic oxidation of methane (SO4-AOM) on the formation of elemental sulfur. The multiple sulfur isotopes reveal variable ranges for both elemental sulfur and pyrite (δ34S: between −15.7 and +23.3‰ for elemental sulfur and between −35.3 and +34.4‰ for pyrite; Δ33S: between −0.08 and +0.06‰ for elemental sulfur and between −0.03 and +0.15‰ for pyrite). The enrichment of 34S in pyrite throughout the sediment core suggests pronounced SO4-AOM in paleo-sulfate-methane transition zones (SMTZ). In addition, the occurrence of seep carbonates with very negative δ13C values (as low as −57‰, V-PDB) coincides with the inferred paleo-SMTZs and agrees with formerly locally pronounced SO4-AOM. Interestingly, the multiple sulfur isotopic composition of elemental sulfur reveals a different pattern from that of pyrite derived from organoclastic sulfate reduction (i.e., with low δ34S and high Δ33S values for the latter). In comparison to coexisting pyrite, most of the elemental sulfur reveals higher δ34S values (as much as +28.9‰), which is best explained by an enrichment of 34S in the residual pool of dissolved sulfide generated by SO4-AOM. As an intermediate sulfur phase, elemental sulfur can form via sulfide oxidation coupled to iron reduction, but it can only persist in the absence of free sulfide. Therefore, the occurrence of 34S enriched elemental sulfur is likely to represent an oxidative product after hydrogen sulfide had vanished due to vertical displacement of the SMTZ. Our observations suggest that elemental sulfur may serve as a useful recorder for reconstructing the dynamics of sulfur cycling in modern and possibly ancient seepage areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: MarsiteCruise was undertaken in October/November 2014 in the Sea of Marmara to gain detailed insight into the fate of fluids migrating within the sedimentary column and partially released into the water column. The overall objective of the project was to achieve a more global understanding of cold-seep dynamics in the context of a major active strike-slip fault. Five remotely operated vehicle (ROV) dives were performed at selected areas along the North Anatolian Fault and inherited faults. To efficiently detect, select and sample the gas seeps, we applied an original procedure. It combines sequentially (1) the acquisition of ship-borne multibeam acoustic data from the water column prior to each dive to detect gas emission sites and to design the tracks of the ROV dives, (2) in situ and real-time Raman spectroscopy analysis of the gas stream, and (3) onboard determination of molecular and isotopic compositions of the collected gas bubbles. The in situ Raman spectroscopy was used as a decision-making tool to evaluate the need for continuing with the sampling of gases from the discovered seep, or to move to another one. Push cores were gathered to study buried carbonates and pore waters at the surficial sediment, while CTD-Rosette allowed collecting samples to measure dissolved-methane concentration within the water column followed by a comparison with measurements from samples collected with the submersible Nautile during the Marnaut cruise in 2007. Overall, the visited sites were characterized by a wide diversity of seeps. CO2- and oil-rich seeps were found at the westernmost part of the sea in the Tekirdag Basin, while amphipods, anemones and coral populated the sites visited at the easternmost part in the Cinarcik Basin. Methane-derived authigenic carbonates and bacterial mats were widespread on the seafloor at all sites with variable size and distributions. The measured methane concentrations in the water column were up to 377 μmol, and the dissolved pore-water profiles indicated the occurrence of sulfate depleting processes accompanied with carbonate precipitation. The pore-water profiles display evidence of biogeochemical transformations leading to the fast depletion of seawater sulfate within the first 25-cm depth of the sediment. These results show that the North Anatolian Fault and inherited faults are important migration paths for fluids for which a significant part is discharged into the water column, contributing to the increase of methane concentration at the bottom seawater and favoring the development of specific ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-11
    Description: Mass-independently fractionated sulfur isotopes (MIF-S) provide strong evidence for an anoxic atmosphere during the Archean. Moreover, the temporal evolution of MIF-S shows increasing magnitudes between 2.7 and 2.5 Ga until the start of the Great Oxidation Event (G.O.E.) at around 2.4 Ga. The conclusion of a completely anoxic atmosphere up to the G.O.E. is in contrast to recent studies on redox-sensitive elements, which suggest slightly oxidizing conditions during continental weathering already several hundred million years prior to the G.O.E. In order to investigate this apparent inconsistency, we present multiple sulfur isotopes for 2.71 Ga pyritic black shales derived from the Kidd Creek area, Ontario, Canada. These samples display high positive Δ33S values up to 3.8‰ and the typical late Archean slope in Δ36S/Δ33S of −0.9. In contrast, the time period before (3.2–2.73 Ga) is characterized by greatly attenuated MIF-S magnitudes and a slope in Δ36S/Δ33S of −1.5. We attribute the increase in Δ33S magnitude as well as the contemporaneous change in the slope of Δ36S/Δ33S to changes in the relative reaction rate of different MIF-S source reactions and changes in atmospheric sulfur exit channels. Both of these are dependent on atmospheric CH4:CO2 and O2 mixing ratios. We propose a distinct change in atmospheric composition at 2.7 Ga resulting from increased fluxes of oxygen and methane as the best explanation for the observed Neoarchean MIF-S record. Our data and modeling results suggest that oxygenic photosynthesis was a major contributor to primary productivity 2.7 billion years ago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-12-07
    Description: The Palinuro volcanic complex and the Panarea hydrothermal field, both located in the Tyrrhenian Sea (Italy), are associated with island arc magmatism and characterized by polymetallic sulfide mineralization. Dissolved sulfide concentrations, pH, and Eh measured in porewaters at both sites reveal a variable hydrothermal influence on porewater chemistry. Multiple sulfur isotopic measurements for disseminated sulfides (CRS: chromium reducible sulfur) extracted from sediments at Palinuro yielded a broad range in δ34S range between −29.8 and + 10.2‰ and Δ33S values between + 0.015 and + 0.134‰. In contrast, sediments at Panarea exhibit a much smaller range in δ34SCRS with less negative values between −11.3 and −1.8‰. The sulfur isotope signatures are interpreted to reflect a mixture between hydrothermal and biogenic sulfide, with a more substantial biogenic contribution at Panarea. Multiple sulfur isotope measurements were performed on sulfides and elemental sulfur from drill core material from the Palinuro massive sulfide complex. δ34S and Δ33S values for pyrite between −32.8 and −1.1‰ and between −0.012 to + 0.042‰, respectively, as well as for elemental sulfur with δ34S and Δ33S values between −26.7 and −2.1‰ and between + 0.035 and + 0.109‰, respectively, point to a microbial origin for much of the sulfide and elemental sulfur studied. Moreover, data suggest a coupling of bacterial sulfate reduction, sulfide oxidation and sulfur disproportionation. In addition, δ34S values for barite between + 25.0 and + 63.6‰ are also in agreement with high microbial turnover of sulfate at Palinuro. Although a magmatic SO2 contribution towards the formation of the Palinuro massive sulfide complex is very likely, the activity of different sulfur utilizing microorganisms played a fundamental role during its formation. Thus, porewater and multiple sulfur isotope data reveal differences in the hydrothermal activity at Palinuro and Panarea drill sites and underline the importance of microbial communities for the origin of massive sulfide mineralizations in the hydrothermal subsurface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Hydrothermal activity is abundant at volcanic structures in subduction zones, including those associated with young volcanism in back-arc regions. Fluid boiling is a common process in these environments, but its fractionation and precipitation effects on trace metals and metalloids are still poorly constrained. The submarine back-arc hydrothermal system of Nifonea caldera hosts two recently discovered active vent sites with sulphide-sulphate chimneys showing a diverse mineralogy and chemistry. The focused discharge of fluids with temperatures (up to 368 °C) near the seawater boiling curve at ~ 1860 m water depth and “jets of steam” emitted from the chimney structures suggest fluid boiling. Fluid processes, as well as metal and metalloid deposition vary on a relatively small spatial-scale (〈0.5 km2) and coincide with changes in sulphide-sulphate mineralogy and texture between different chimneys with zoning and dendritic intergrowths, indicating temperature gradients and fluid boiling. Boiling-induced precipitation, together with seawater mixing in the sub-seafloor led to a depletion of Zn, Ga, Ge, Ag, Cd, Sb, Au and Pb in the discharging fluids and their precipitates at the main compared to the northern vent site, also resulting in a depleted trace element signature with respect to most other back-arc hydrothermal systems in the Pacific Ocean. A magmatic-hydrothermal signature (high ) in some of the discharging fluids propose a weak magmatic volatile influx to the Nifonea caldera hydrothermal system. However, S isotope data provides no evidence for a magmatic volatile component and rather suggests, in combination with the sulphide-sulphate (Zn, Ge, Se, Ag, Cd, Sb, Ba, Au and Pb) and fluid data (high K) that the Nifonea caldera hydrothermal system is dominantly controlled by a combination of boiling, mixing and water–rock interaction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Highlights • Decoupling of volatile element enrichment and magmatic volatile influx. • Multiple sulfide generations with distinct trace element signatures. • Boiling-induced pyrite precipitation revealed by textures and Tl/Pb, Sb/Pb and Bi/Pb ratios. • Boiling-induced Au, electrum and Bi-telluride colloids lead to high Au grades. • Metals sources: shallow upflow- (60–80%) and deep reaction (20–40%) zone. Abstract Shallow (〈1500 mbsl) submarine arc-related hydrothermal systems can host base (Cu), precious (Au) and volatile elements (As, Se, Sb, Te, Tl) in significant quantities. Their wide application in the high-tech industry, but a potential eco-toxicological footprint gives them a strategic importance. However, the processes that concentrate these elements in submarine arc-related hydrothermal systems, compared to their mid-ocean ridge counterparts are still debated, and it is unclear whether boiling-related processes and/or the contribution of magmatic volatiles are key for their enrichment. We present bulk sulfide-sulfate, isotope (S and Pb), and high-resolution microanalytical data of hydrothermal sulfides from the Niua South fore-arc volcano in north Tonga, where numerous black-smoker type sulfide-sulfate chimneys emit boiling fluids with temperatures (up to 325 °C) near the seawater boiling curve at ~1170 m water depth. Hence, this system represents an ideal natural laboratory to investigate the effect of fluid boiling on base, precious, and volatile element enrichment associated with hydrothermal seafloor mineralization. At Niua South, textural and chemical variations of multiple pyrite (framboidal, euhedral and massive), chalcopyrite (linings), and sphalerite (dendrites and linings) generations are indicative for sulfide precipitation from early low-temperature (~240 °C) fluids that underwent abundant mixing with ambient seawater (low Se/Tl and Co/Ni ratios in pyrite) and from later high-temperature (up to 325 °C) (high Se/Tl and Co/Ni ratios in pyrite). In addition, crustiform inclusion-rich pyrite that precipitated from high-temperature boiling fluids shows low Bi/Pb, Tl/Pb and Sb/Pb ratios due to volatile element loss (e.g., Tl and Sb) to the vapor phase compared to pyrite that formed during the low temperature stage. By contrast, late sphalerite (~280 °C) is enriched in elements with an affinity to Cl-complexes like Mn, Co, Ni, Ga, Cd, In, and Sn, and therefore precipitated from the corresponding Cl-rich liquid phase. Gold occurs in solid-solution and as boiling-induced particles of native Au, electrum, and Au-rich Bi-tellurides in pyrite (up to 144 ppm Au), sphalerite (up to 60 ppm Au), and chalcopyrite (up to 37 ppm Au). These particles (〈5–10 µm) probably formed during fluid boiling causing an extreme Au enrichment (〉30 ppm) in the mature and late stage of chimney formation. Lead isotope data indicate that the hydrothermal fluids scavenged metals not only from the deeper basement in the reaction zone (20–40%), but also from young dacitic volcanic rocks near the seafloor in the upflow zone (60–80%). Sulfur isotope (δ34S = −0.3 to 4.4‰) and Se/S*106 values (〈1500) of hydrothermal sulfides provide no evidence for a magmatic volatile influx and indicate that S, and most metals and semi-metals were likely leached from the host rocks. Hence, volatile (As, Se, Sb, Te, Tl), and precious (Au) element enrichments in arc-related submarine hydrothermal systems can be decoupled from magmatic volatiles and are instead a result of boiling-induced trace element fractionation – a hydrothermal enrichment process, which has been underestimated to date.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-05-12
    Description: We investigated microbial life preserved in a hydrothermally inactive silica–barite chimney in comparison with an active barite chimney and sediment from the Loki’s Castle low-temperature venting area at the Arctic Mid-Ocean Ridge (AMOR) using lipid biomarkers. Carbon and sulfur isotopes were used to constrain possible metabolic pathways. Multiple sulfur (δ34S, ∆33S) isotopes on barite over a cross section of the extinct chimney range between 21.1 and 22.5 ‰ in δ34S, and between 0.020 and 0.034 ‰ in Δ33S, indicating direct precipitation from seawater. Biomarker distributions within two discrete zones of this silica–barite chimney indicate a considerable difference in abundance and diversity of microorganisms from the chimney exterior to the interior. Lipids in the active and inactive chimney barite and sediment were dominated by a range of 13C-depleted unsaturated and branched fatty acids with δ13C values between −39.7 and −26.7 ‰, indicating the presence of sulfur-oxidizing and sulfate-reducing bacteria. The majority of lipids (99.5 %) in the extinct chimney interior that experienced high temperatures were of archaeal origin. Unusual glycerol monoalkyl glycerol tetraethers (GMGT) with 0–4 rings were the dominant compounds suggesting the presence of mainly (hyper-) thermophilic archaea. Isoprenoid hydrocarbons with δ13C values as low as −46 ‰ also indicated the presence of methanogens and possibly methanotrophs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pieterek, B., Ciazela, J., Boulanger, M., Lazarov, M., Wegorzewski, A., Pańczyk, M., Strauss, H., Dick, H. J. B., Muszyński, A., Koepke, J., Kuhn, T., Czupyt, Z., & France, L. Sulfide enrichment along igneous layer boundaries in the lower oceanic crust: IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge. Geochimica et Cosmochimica Acta, 320, (2022): 179–206, https://doi.org/10.1016/j.gca.2022.01.004.
    Description: Reactive porous or focused melt flows are common in crystal mushes of mid-ocean ridge magma reservoirs. Although they exert significant control on mid-ocean ridge magmatic differentiation, their role in metal transport between the mantle and the ocean floor remains poorly constrained. Here we aim to improve such knowledge for oceanic crust formed at slow-spreading centers (approximately half of present-day oceanic crust), by focusing on specific igneous features where sulfides are concentrated. International Ocean Discovery Program (IODP) Expedition 360 drilled Hole U1473A 789 m into the lower crust of the Atlantis Bank oceanic core complex, located at the Southwest Indian Ridge. Coarse-grained (5–30 mm) olivine gabbro prevailed throughout the hole, ranging locally from fine- (〈1 mm), to very coarse-grained (〉30 mm). We studied three distinct intervals of igneous grain size layering at 109.5–110.8, 158.0–158.3, and 593.0–594.4 meters below seafloor to understand the distribution of sulfides. We found that the layer boundaries between the fine- and coarse-grained gabbro were enriched in sulfides and chalcophile elements. On average, sulfide grains throughout the layering were composed of pyrrhotite (81 vol.%; Fe1-xS), chalcopyrite (16 vol.%; CuFeS2), and pentlandite (3 vol.%; [Ni,Fe,Co]9S8), which reflect paragenesis of magmatic origin. The sulfides were most commonly associated with Fe-Ti oxides (titanomagnetites and ilmenites), amphiboles, and apatites located at the interstitial positions between clinopyroxene, plagioclase, and olivine. Pentlandite exsolution textures in pyrrhotite indicate that the sulfides formed from high-temperature sulfide liquid separated from mafic magma that exsolved upon cooling. The relatively homogenous phase proportion within sulfides along with their chemical and isotopic compositions throughout the studied intervals further support the magmatic origin of sulfide enrichment at the layer boundaries. The studied magmatic layers were likely formed as a result of intrusion of more primitive magma (fine-grained gabbro) into the former crystal mush (coarse-grained gabbro). Sulfides from the coarse-grained gabbros are Ir-Platinum Group Element-rich (PGE; i.e., Ir, Os, Ru) but those from the fine-grained gabbros are Pd-PGE-rich (i.e., Pd, Pt, Rh). Notably, the sulfides from the layer boundaries are also enriched in Pd-PGEs, and therefore elevated sulfide contents at the boundaries were likely related to the new intruding melt. Because S concentration at sulfide saturation level is dependent on the Fe content of the melt, sulfide crystallization may have been caused by FeO loss, both via crystallization of late-precipitating oxides at the boundaries, and by exchange of Fe and Mg between melt and Fe-bearing silicates (olivine and clinopyroxene). The increased precipitation of sulfide grains at the layer boundaries might be widespread in the lower oceanic crust, as also observed in the Semail ophiolite and along the Mid-Atlantic Ridge. Therefore, this process might affect the metal budget of the global lower oceanic crust. We estimate that up to ∼20% of the Cu, ∼8% of the S, and ∼84% of the Pb of the oceanic crust inventory is accumulated at the layer boundaries only from the interaction between crystal mush and new magma.
    Description: This research was funded by National Science Centre Poland (PRELUDIUM 12 no. 2016/23/N/ST10/00288), Graduate Academy of the Leibniz Universität Hannover (60421784), and ECORD Research Grant to J. Ciazela, as well as Deutsche Forschungsgemeinschaft (KO1723/23-1) to J. Koepke and H. Strauss. J. Ciazela is additionally supported within the START program of the Foundation for Polish Science (FNP). This is CRPG contribution No. 2813.
    Keywords: Sulfides ; Chalcophile elements ; Platinum group elements ; Lower oceanic crust ; IODP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...