GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Highlights • Marine Image Annotation Software (MIAS) are used to assist annotation of underwater imagery. • We compare 23 MIAS assisting human annotation including some that include automated annotation. • MIAS can run in real time (50%), allow posterior annotation (95%), and interact with databases and data flows (44%). • MIAS differ in data input/output and display, customization, image analysis and re-annotation. • We provide important considerations when selecting UIAS, and outline future trends. Abstract Given the need to describe, analyze and index large quantities of marine imagery data for exploration and monitoring activities, a range of specialized image annotation tools have been developed worldwide. Image annotation - the process of transposing objects or events represented in a video or still image to the semantic level, may involve human interactions and computer-assisted solutions. Marine image annotation software (MIAS) have enabled over 500 publications to date. We review the functioning, application trends and developments, by comparing general and advanced features of 23 different tools utilized in underwater image analysis. MIAS requiring human input are basically a graphical user interface, with a video player or image browser that recognizes a specific time code or image code, allowing to log events in a time-stamped (and/or geo-referenced) manner. MIAS differ from similar software by the capability of integrating data associated to video collection, the most simple being the position coordinates of the video recording platform. MIAS have three main characteristics: annotating events in real time, in posteriorly to annotation and interact with a database. These range from simple annotation interfaces, to full onboard data management systems, with a variety of toolboxes. Advanced packages allow to input and display of data from multiple sensors or multiple annotators via intranet or internet. Posterior human-mediated annotation often include tools for data display and image analysis, e.g. length, area, image segmentation, point count; and in a few cases the possibility of browsing and editing previous dive logs or to analyze annotation data. The interaction with a database allows the automatic integration of annotations from different surveys, repeated annotation and collaborative annotation of shared datasets, browsing and querying of data. Progress in the field of automated annotation is mostly in post processing, for stable platforms or still images. Integration into available MIAS is currently limited to semi-automated processes of pixel recognition through computer-vision modules that compile expert-based knowledge. Important topics aiding the choice of a specific software are outlined, the ideal software is discussed and future trends are presented.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-26
    Description: Highlights • The proposed method automatically assesses the abundance of poly-metallic nodules on the seafloor. • No manually created feature reference set is required. • Large collections of benthic images from a range of acquisition gear can be analysed efficiently. Abstract Underwater image analysis is a new field for computational pattern recognition. In academia as well as in the industry, it is more and more common to use camera-equipped stationary landers, autonomous underwater vehicles, ocean floor observatory systems or remotely operated vehicles for image based monitoring and exploration. The resulting image collections create a bottleneck for manual data interpretation owing to their size. In this paper, the problem of measuring size and abundance of poly-metallic nodules in benthic images is considered. A foreground/background separation (i.e. separating the nodules from the surrounding sediment) is required to determine the targeted quantities. Poly-metallic nodules are compact (convex), but vary in size and appear as composites with different visual features (color, texture, etc.). Methods for automating nodule segmentation have so far relied on manual training data. However, a hand-drawn, ground-truthed segmentation of nodules and sediment is difficult (or even impossible) to achieve for a sufficient number of images. The new ES4C algorithm (Evolutionary tuned Segmentation using Cluster Co-occurrence and a Convexity Criterion) is presented that can be applied to a segmentation task without a reference ground truth. First, a learning vector quantization groups the visual features in the images into clusters. Secondly, a segmentation function is constructed by assigning the clusters to classes automatically according to defined heuristics. Using evolutionary algorithms, a quality criterion is maximized to assign cluster prototypes to classes. This criterion integrates the morphological compactness of the nodules as well as feature similarity in different parts of nodules. To assess its applicability, the ES4C algorithm is tested with two real-world data sets. For one of these data sets, a reference gold standard is available and we report a sensitivity of 0.88 and a specificity of 0.65. Our results show that the applied heuristics, which combine patterns in the feature domain with patterns in the spatial domain, lead to good segmentation results and allow full automation of the resource-abundance assessment for benthic poly-metallic nodules.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    In:  GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 2 pp.
    Publication Date: 2020-11-09
    Description: (GPF20-3_088), 10.10. - 10.11.2020, Emden - Emden
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    In:  GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 2 pp.
    Publication Date: 2020-10-19
    Description: (GPF20-3_088), 10.10. - 10.11.2020, Emden - Emden
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    Publication Date: 2023-11-08
    Description: (GPF20-3_088), 10.10. - 10.11.2020, Emden - Emden
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    Publication Date: 2023-11-08
    Description: (GPF20-3_088), 10.10. - 10.11.2020, Emden - Emden
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: Highlights • Seafloor geomorphology was important in the structuring of abyssal megafauna. • Differences in megafaunal community ecology were found between all landscape types. • Lower megafauna density & diversity in a bathymetric valley than flat and ridge areas. • Large samples, collected by AUV, were required to make robust ecological conclusions. The potential for imminent polymetallic nodule mining in the Clarion Clipperton Fracture Zone (CCZ) has attracted considerable scientific and public attention. This concern stems from both the extremely large seafloor areas that may be impacted by mining, and the very limited knowledge of the fauna and ecology of this region. The environmental factors regulating seafloor ecology are still very poorly understood. In this study, we focus on megafaunal ecology in the proposed conservation zone ‘Area of Particular Environmental Interest 6′ (study area centred 17°16′N, 122°55′W). We employ bathymetric data to objectively define three landscape types in the area (a level bottom Flat, an elevated Ridge, a depressed Trough; water depth 3950–4250 m) that are characteristic of the wider CCZ. We use direct seabed sampling to characterise the sedimentary environment in each landscape, detecting no statistically significant differences in particle size distributions or organic matter content. Additional seafloor characteristics and data on both the metazoan and xenophyophore components of the megafauna were derived by extensive photographic survey from an autonomous underwater vehicle. Image data revealed that there were statistically significant differences in seafloor cover by nodules and in the occurrence of other hard substrata habitat between landscapes. Statistically significant differences in megafauna standing stock, functional structuring, diversity, and faunal composition were detected between landscapes. The Flat and Ridge areas exhibited a significantly higher standing stock and a distinct assemblage composition compared to the Trough. Geomorphological variations, presumably regulating local bottom water flows and the occurrence of nodule and xenophyophore test substrata, between study areas may be the mechanism driving these assemblage differences. We also used these data to assess the influence of sampling unit size on the estimation of ecological parameters. We discuss these results in the contexts of regional benthic ecology and the appropriate management of potential mining activities in the CCZ and elsewhere in the deep ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Highlights • All known observations for Area of Particular Environmental Interest 6 presented. • Assess morphology, sediments, nodules, oceanography, biogeochemistry and ecology. • APEI-6 partially representative of nearby exploration areas yet clear differences. • Present scientific synthesis and management implications for Clarion Clipperton Zone. To protect the range of habitats, species, and ecosystem functions in the Clarion Clipperton Zone (CCZ), a region of interest for deep-sea polymetallic nodule mining in the Pacific, nine Areas of Particular Environmental Interest (APEIs) have been designated by the International Seabed Authority (ISA). The APEIs are remote, rarely visited and poorly understood. Here we present and synthesise all available observations made at APEI-6, the most north eastern APEI in the network, and assess its representativity of mining contract areas in the eastern CCZ. The two studied regions of APEI-6 have a variable morphology, typical of the CCZ, with hills, plains and occasional seamounts. The seafloor is predominantly covered by fine-grained sediments, and includes small but abundant polymetallic nodules, as well as exposed bedrock. The oceanographic parameters investigated appear broadly similar across the region although some differences in deep-water mass separation were evident between APEI-6 and some contract areas. Sediment biogeochemistry is broadly similar across the area in the parameters investigated, except for oxygen penetration depth, which reached 〉2 m at the study sites within APEI-6, deeper than that found at UK1 and GSR contract areas. The ecology of study sites in APEI-6 differs from that reported from UK1 and TOML-D contract areas, with differences in community composition of microbes, macrofauna, xenophyophores and metazoan megafauna. Some species were shared between areas although connectivity appears limited. We show that, from the available information, APEI-6 is partially representative of the exploration areas to the south yet is distinctly different in several key characteristics. As a result, additional APEIs may be warranted and caution may need to be taken in relying on the APEI network alone for conservation, with other management activities required to help mitigate the impacts of mining in the CCZ.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Marine ecosystem dynamics in the context of climate change is a growing scientific, political and social concern requiring regular monitoring through appropriate observational technologies and studies. Thus, a wide range of tools comprising chemical, biogeochemical, physical, and biological sensors, as well as other platforms exists for marine monitoring. However, their high acquisition and maintenance costs are often a major obstacle, especially in low-income developing countries. We designed an advanced low-cost synoptic marine ecosystem observation system that operates at relatively high temporal frequencies, named PlasPi TDM. This instrument is an improved version of the camera system (PlasPI marine cameras) developed in 2020 by Autun Purser from the Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (Germany), and collaborators. It incorporates several innovative developments such as multispectral (records the spectrum of any object photographed), temperature and pressure sensors. The PlasPi TDM operates to a depth of 200 m. The various field deployments demonstrate the operational capability of the PlasPi TDM for different applications and illustrate its considerable potential for in-situ observations and marine surveillance in Africa. This device is intended as an open-source project and its continued development is encouraged for a more integrated, sustainable and low-cost ocean observing system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Highlights • AUV geophysical mapping reveals complex patterns of Mn nodule distribution. • Geophysical and image-based data suggest that Mn nodule occurence relates to sediment thickness. • The role of sediment thickness in nodule development requires detailed geochemical investigation. Abstract The relationship between polymetallic nodules (Mn nodules) and deep-sea stratigraphy is relatively poorly studied and the role of sediment thickness in determining nodule occurrence is an active field of research. This study utilizes geophysical observations from three types of autonomous underwater vehicle (AUV) data (multi-beam bathymetry, sub-bottom profiles and underwater photography) in order to assess this relationship. Multi-beam bathymetry was processed with a pattern recognition approach for producing objective geomorphometric classes of the seafloor for examining their relation to sediment thickness and nodule occurence. Sub-bottom profiles were used for extracting sediment thickness along a dense network of tracklines. Close-range AUV-photography data was used for automated counting of polymetallic nodules and their geometric features and it served as ground truth data. It was observed that higher nodule occurence were related to layers with increased sediment thickness. This evidence reveals the role of local seafloor heterogeneity in nodule formation and suggests that unique patterns of local stratigraphy may affect geochemical processes that promote polymetallic nodule development at local scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...