GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Gold colloids occur in black smoker fluids from the Niua South hydrothermal vent field, Lau Basin (South Pacific Ocean), confirming the long-standing hypothesis that gold may undergo colloidal transport in hydrothermal fluids. Six black smoker vents, varying in temperature from 250 °C to 325 °C, were sampled; the 325 °C vent was boiling at the time of sampling and the 250 °C fluids were diffusely venting. Native gold particles ranging from 〈50 nm to 2 μm were identified in 4 of the fluid samples and were also observed to precipitate on the sampler during collection from the boiling vent. Total gold concentrations (dissolved and particulate) in the fluid samples range from 1.6 to 5.4 nM in the high-temperature, focused flow vents. Although the gold concentrations in the focused flow fluids are relatively high, they are lower than potential solubilities prior to boiling and indicate that precipitation was boiling induced, with sulfide lost upon boiling to exsolution and metal sulfide formation. Gold concentrations reach 26.7 nM in the 250 °C diffuse flow sample, and abundant native gold particles were also found in the fluids and associated sulfide chimney and are interpreted to be a product of colloid accumulation and growth following initial precipitation upon boiling. These results indicate that colloid-driven precipitation as a result of boiling, the persistence of colloids after boiling, and the accumulation of colloids in diffuse flow fluids are important mechanisms for the enrichment of gold in seafloor hydrothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-17
    Description: Bowers Ridge is an similar to 700 km long arcuate ridge behind the Central Aleutian Arc in the Bering Sea. The lack of age and geochemical data for the ridge has hampered the development of geodynamic models for the evolution of the North Pacific and the Aleutian-Bering Sea region. Here we present the first geochemical and Ar-40/Ar-39 age data for the volcanic basement of Bowers Ridge and a seamount from the western end of the ridge sampled during R/V Sonne cruise SO201-1b. The northern Bowers Ridge basement (26-32 Ma) consists of mafic to intermediate calc-alkaline rocks with adakite-like (Sr/Y = 33-53, La-N/Yb-N = 3.3-7.8), high field strength element (HFSE)-depleted (e.g., Nb-N/La-N = 0.07-0.31) trace element patterns and Sr-Nd-Pb isotope compositions within the Western Aleutian Arc array, implying magma generation above an obliquely subducting slab. The seamount samples (22-24 Ma) are HFSE-rich alkaline olivine basalts (La-N/Yb-N = 3.3-3.9, Nb-N/La-N = 1.0-1.4) with minor arc-type trace element signatures (Pb-N/Ce-N = 1.4-1.6, K-N/Nb-N = 1.7-1.9) but with Pacific mid-oceanic-ridge basalt (MORB)-like isotopic compositions, pointing to an origin by small-degree decompression melting from slightly subduction-modified mantle. The geochemistry of the recovered rocks can be explained by highly oblique subduction along the northern part of Bowers Ridge in its present-day configuration, consistent with an in-situ origin of Bowers Ridge as a Cenozoic island arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Chemical Geology, ELSEVIER SCIENCE BV, 507, pp. 9-22, ISSN: 0009-2541
    Publication Date: 2019-01-16
    Description: The Mozambique Ridge (MOZR) is one of several bathymetric highs formed in the South African gateway shortly after the breakup of the supercontinent Gondwana. Two major models have been proposed for its formation - volcanic plateau and continental raft. In order to gain new insights into the genesis of the Mozambique Ridge, R/V SONNE cruise SO232 carried out bathymetric mapping, seismic reflection studies and comprehensive rock sampling of the igneous plateau basement. In this study, geochemical data are presented for 51 dredged samples, confirming the volcanic origin of at least the upper (exposed) part of the plateau. The samples have DUPAL-like geochemical compositions with high initial 87Sr/86Sr (0.7024–0.7050), low initial 143Nd/144Nd (0.5123–0.5128) and low initial 176Hf/177Hf (0.2827–0.2831), and elevated initial 207Pb/204Pb and 208Pb/204Pb at a given 206Pb/204Pb (Δ7/4 = 2–16; Δ8/4 = 13–167). The geochemistry, however, is not consistent with exclusive derivation from an Indian MORB-type mantle source and requires a large contribution from at least two components. Ratios of fluid-immobile incompatible elements suggest the addition of an OIB-type mantle to the ambient upper mantle. The MOZR shares similar isotopic compositions similar to mixtures of sub-continental lithospheric mantle end members but also to long-lived, mantle-plume-related volcanic structures such as the Walvis Ridge, Discovery Seamounts and Shona hotspot track in the South Atlantic Ocean, which have been proposed to ascend from the African Large Low Shear Velocity Province (LLSVP), a possible source for DUPAL-type mantle located at the core-mantle boundary. Interestingly, the MOZR also overlaps compositionally with the nearby Karoo-Vestfjella Continental Flood Basalt province after filtering for the effect of interaction with the continental lithosphere. This geochemical similarity suggests that both volcanic provinces may be derived from a common deep source. Since a continuous hotspot track connecting the Karoo with the MOZR has not been found, there is some question about derivation of both provinces from the same plume. In conclusion, two possible models arise: (1) formation by a second mantle upwelling (blob or mantle plume), possibly reflecting a pulsating plume, or (2) melting of subcontinental lithospheric material transferred by channelized flow to the mid-ocean ridge shortly after continental break-up. Based on geological, geophysical and geochemical observations from this study and recent published literature, the mantle-plume model is favored.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...