GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (3)
  • Springer Nature  (2)
  • Laboratoire EDYTEM - UMR5204, Université Savoie Mont Blanc  (1)
  • 1
    Publication Date: 2021-07-09
    Description: Remobilization of soil carbon as a result of permafrost degradation in the drainage basin of the major Siberian rivers combined with higher precipitation in a warming climate potentially increase the flux of terrestrial derived dissolved organic matter (tDOM) into the Arctic Ocean. The Laptev (LS) and East Siberian Seas (ESS) receive enormous amounts of tDOM-rich river water, which undergoes at least one freeze-melt cycle in the Siberian Arctic shelf seas. To better understand how freezing and melting affect the tDOM dynamics in the LS and ESS, we sampled sea ice, river and seawater for their dissolved organic carbon (DOC) concentration and the colored fraction of dissolved organic matter. The sampling took place in different seasons over a period of 9 years (2010–2019). Our results suggest that the main factor regulating the tDOM distribution in the LS and ESS is the mixing of marine waters with freshwater sources carrying different tDOM concentrations. Of particular importance in this context are the 211 km3 of meltwater from land-fast ice from the LS, containing ~ 0.3 Tg DOC, which in spring mixes with 245 km3 of river water from the peak spring discharge of the Lena River, carrying ~ 2.4 Tg DOC into the LS. During the ice-free season, tDOM transport on the shelves takes place in the surface mixed layer, with the direction of transport depending on the prevailing wind direction. In winter, about 1.2 Tg of brine-related DOC, which was expelled from the growing land-fast ice in the LS, is transported in the near-surface water layer into the Transpolar Drift Stream that flows from the Siberian Shelf toward Greenland. The actual water depth in which the tDOM-rich brines are transported, depends mainly on the density stratification of the LS and ESS in the preceding summer and the amount of ice produced in winter. We suspect that climate change in the Arctic will fundamentally alter the dynamics of tDOM transport in the Arctic marginal seas, which will also have consequences for the Arctic carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: River water is the main source of dissolved organic carbon (DOC) in the Arctic Ocean. DOC plays an important role in the Arctic carbon cycle, and its export from land to sea is expected to increase as ongoing climate change accelerates permafrost thaw. However, transport pathways and transformation of DOC in the land-to-ocean transition are mostly unknown. We collected DOC and aCDOM(λ) samples from 11 expeditions to river, coastal and offshore waters and present a new DOC–aCDOM(λ) model for the fluvial–marine transition zone in the Laptev Sea. The aCDOM(λ) characteristics revealed that the dissolved organic matter (DOM) in samples of this dataset are primarily of terrigenous origin. Observed changes in aCDOM(443) and its spectral slopes indicate that DOM is modified by microbial and photo-degradation. Ocean colour remote sensing (OCRS) provides the absorption coefficient of coloured dissolved organic matter (aCDOM(λ)sat) at λ=440 or 443 nm, which can be used to estimate DOC concentration at high temporal and spatial resolution over large regions. We tested the statistical performance of five OCRS algorithms and evaluated the plausibility of the spatial distribution of derived aCDOM(λ)sat. The OLCI (Sentinel-3 Ocean and Land Colour Instrument) neural network swarm (ONNS) algorithm showed the best performance compared to in situ aCDOM(440) (r2=0.72). Additionally, we found ONNS-derived aCDOM(440), in contrast to other algorithms, to be partly independent of sediment concentration, making ONNS the most suitable aCDOM(λ)sat algorithm for the Laptev Sea region. The DOC–aCDOM(λ) model was applied to ONNS-derived aCDOM(440), and retrieved DOC concentration maps showed moderate agreement to in situ data (r2=0.53). The in situ and satellite-retrieved data were offset by up to several days, which may partly explain the weak correlation for this dynamic region. Satellite-derived surface water DOC concentration maps from Medium Resolution Imaging Spectrometer (MERIS) satellite data demonstrate rapid removal of DOC within short time periods in coastal waters of the Laptev Sea, which is likely caused by physical mixing and different types of degradation processes. Using samples from all occurring water types leads to a more robust DOC–aCDOM(λ) model for the retrievals of DOC in Arctic shelf and river waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Permafrost degradation in the catchment of major Siberian rivers, combined with higher precipitation in a warming climate, could increase the flux of terrestrially derived dissolved organic matter (tDOM) into the Arctic Ocean (AO). Each year, ∼ 7.9 Tg of dissolved organic carbon (DOC) is discharged into the AO via the three largest rivers that flow into the Laptev Sea (LS) and East Siberian Sea (ESS). A significant proportion of this tDOM-rich river water undergoes at least one freeze–melt cycle in the land-fast ice that forms along the coast of the Laptev and East Siberian seas in winter. To better understand how growth and melting of land-fast ice affect dissolved organic matter (DOM) dynamics in the LS and ESS, we determined DOC concentrations and the optical properties of coloured dissolved organic matter (CDOM) in sea ice, river water and seawater. The data set, covering different seasons over a 9-year period (2010–2019), was complemented by oceanographic measurements (T, S) and determination of the oxygen isotope composition of the seawater. Although removal of tDOM cannot be ruled out, our study suggests that conservative mixing of high-tDOM river water and sea-ice meltwater with low-tDOM seawater is the major factor controlling the surface distribution of tDOM in the LS and ESS. A case study based on data from winter 2012 and spring 2014 reveals that the mixing of about 273 km3 of low-tDOM land-fast-ice meltwater (containing ∼ 0.3 Tg DOC) with more than 200 km3 of high-tDOM Lena River water discharged during the spring freshet (∼ 2.8 Tg DOC yr−1) plays a dominant role in this respect. The mixing of the two low-salinity surface water masses is possible because the meltwater and the river water of the spring freshet flow into the southeastern LS at the same time every year (May–July). In addition, budget calculations indicate that in the course of the growth of land-fast ice in the southeastern LS, ∼ 1.2 Tg DOC yr−1 (± 0.54 Tg) can be expelled from the growing ice in winter, together with brines. These DOC-rich brines can then be transported across the shelves into the Arctic halocline and the Transpolar Drift Current flowing from the Siberian Shelf towards Greenland. The study of dissolved organic matter dynamics in the AO is important not only to decipher the Arctic carbon cycle but also because CDOM regulates physical processes such as radiative forcing in the upper ocean, which has important effects on sea surface temperature, water column stratification, biological productivity and UV penetration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-16
    Description: The Laptev and Eastern Siberian shelves are the world’s broadest shallow shelf systems. Large Siberian rivers and coastal erosion of up to meters per summer deliver large volumes of terrestrial matter into the Arctic shelf seas. In this chapter we investigate the applicability of Ocean Colour Remote Sensing during the ice-free summer season in the Siberian Laptev Sea region. We show that the early summer river peak discharge may be traced using remote sensing in years characterized by early sea-ice retreat. In the summer time after the peak discharge, the spreading of the main Lena River plume east and north-east of the Lena River Delta into the shelf system becomes hardly traceable using optical remote sensing methods. Measurements of suspended particulate matter (SPM) and coloured dissolved organic matter (cDOM) are of the same magnitude in the coastal waters of Buor Khaya Bay as in the Lena River. Match-up analyses of in situ chlorophyll-a (Chl-a) show that standard Medium Resolution Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived Chl-a is not a valid remote sensing product for the coastal waters and the inner shelf region of the Laptev Sea. All MERIS and MODIS-derived Chl-a products are overestimated by at least a factor of ten, probably due to absorption by the extraordinarily high amount of non-algal particles and cDOM in these coastal and inner-shelf waters. Instead, Ocean Colour remote sensing provides information on wide-spread resuspension over shallows and lateral advection visible in satellite-derived turbidity. Satellite Sea Surface Temperature (SST) data clearly show hydrodynamics and delineate the outflow of the Lena River for hundreds of kilometres out into the shelf seas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-22
    Description: Arctic warming is causing ancient perennially frozen ground (permafrost) to thaw, resulting in ground collapse, and reshaping of landscapes. This threatens Arctic peoples' infrastructure, cultural sites, and land-based natural resources. Terrestrial permafrost thaw and ongoing intensification of hydrological cycles also enhance the amount and alter the type of organic carbon (OC) delivered from land to Arctic nearshore environments. These changes may affect coastal processes, food web dynamics and marine resources on which many traditional ways of life rely. Here, we examine how future projected increases in runoff and permafrost thaw from two permafrost-dominated Siberian watersheds—the Kolyma and Lena, may alter carbon turnover rates and OC distributions through river networks. We demonstrate that the unique composition of terrestrial permafrost-derived OC can cause significant increases to aquatic carbon degradation rates (20 to 60% faster rates with 1% permafrost OC). We compile results on aquatic OC degradation and examine how strengthening Arctic hydrological cycles may increase the connectivity between terrestrial landscapes and receiving nearshore ecosystems, with potential ramifications for coastal carbon budgets and ecosystem structure. To address the future challenges Arctic coastal communities will face, we argue that it will become essential to consider how nearshore ecosystems will respond to changing coastal inputs and identify how these may affect the resiliency and availability of essential food resources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...