GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (1)
  • International Council for the Exploration of the Sea (ICES)  (1)
  • 1
    Publication Date: 2023-02-28
    Description: The Working Group on Fisheries Benthic Impact and Trade-offs (WGFBIT) develops methods and performs assessments to evaluate benthic impact from fisheries at regional scale, while con- sidering fisheries and seabed impact trade-offs. In this report, new fishery benthic impact assessments (ToR A) are shown out for several sub- regions in (French Mediterranean, Celtic Seas). For other regions, updates of the whole assess- ment or specific steps only were presented. To further standardise the different components of the WGFBIT approach across all (sub-)re- gional assessments, a more detail overview of those components was compiled. These compo- nents were slightly different among those regions, related to variation in data availability, envi- ronmental characteristics and implementation possibilities among the (sub-)regions. In WGFBIT, assessments are sometimes based on trawl or grab data, which are sampling differ- ent components of the seafloor ecosystem and can have consequences on the created sensitivity layer. Therefore, there is looked in more detail how the sensitivity outcome (and layers) can dif- fer due to the use of benthic data gathered with different gears (grab/core, trawl or video). The preliminary comparability analyses are performed on different levels: (1) based on co-located sampling; (2) comparing sensitivity maps of the (sub-) area, based on different gears. There were differences observed in longevity distribution at locations sampled with different gears and dif- ferences in data and models lead also to differences in the sensitivity layers. The WGFBIT seafloor assessment framework is not the only way to assess benthic impacts from physical disturbance. A discussion session was held on how the future workflow on advice that ICES WGFBIT assessment contribute to, will be organized. Marine sediments harbour significant levels of biodiversity that play a key role in ecosystem functions and services such as biogeochemical cycling, carbon storage and the regulation of cli- mate. Through the removal of fauna, changes in physico-chemical nature and resuspension of sediment, bottom trawling may result in significant changes in the ecosystem functioning of shelf seas. An assumption of the current PD model is that high community biomass implies higher ecosystem functioning. However, total community biomass does not necessarily reflect changes in species and functional trait composition which play a key role in regulating ecosystem func- tions. ToR D is working on an improved understanding of the link between species functional effect traits and proxies and processes for specific ecosystem functions to improve our ability to predict the impact of fishing disturbance on benthic ecosystem functioning more accurately. Links between species traits and biogeochemical parameters and the impact of trawling on these links are being explored using multivariate ordination analyses using different fauna and bioge- ochemical datasets collected in the North Sea, Celtic Sea, Kattegat, Baltic Sea and the eastern Mediterranean. Changes due to trawling in the trajectories of species densities over time and the concurrent changes in the bioturbation and bioirrigation potential of communities are being modelled using a combination of data-driven mechanistic model and a biogeochemical model. We report on the different data analysis methods that ToR D members have developed over the last year.
    Description: ICES
    Description: Published
    Description: Refereed
    Keywords: WGFBIT ; Fishery Benthic Impact ; Benthic Impact ; Human impact ; Fishery management ; Benthos ; Seabed ecoystem
    Repository Name: AquaDocs
    Type: Report
    Format: 112pp.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of feedbacks that is important to understand and quantify. This paper addresses multiple pathways for aerosol and chemical feedbacks in Earth system models. These focus on changes in natural emissions (dust, sea salt, dimethyl sulfide, biogenic volatile organic compounds (BVOCs) and lightning) and changes in reaction rates for methane and ozone chemistry. The feedback terms are then given by the sensitivity of a pathway to climate change multiplied by the radiative effect of the change. We find that the overall climate feedback through chemistry and aerosols is negative in the sixth Coupled Model Intercomparison Project (CMIP6) Earth system models due to increased negative forcing from aerosols in a climate with warmer surface temperatures following a quadrupling of CO2 concentrations. This is principally due to increased emissions of sea salt and BVOCs which are sensitive to climate change and cause strong negative radiative forcings. Increased chemical loss of ozone and methane also contributes to a negative feedback. However, overall methane lifetime is expected to increase in a warmer climate due to increased BVOCs. Increased emissions of methane from wetlands would also offset some of the negative feedbacks. The CMIP6 experimental design did not allow the methane lifetime or methane emission changes to affect climate, so we found a robust negative contribution from interactive aerosols and chemistry to climate sensitivity in CMIP6 Earth system models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...