GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • COMPANY OF BIOLOGISTS LTD  (4)
  • Company of Biologists  (2)
  • 1
    facet.materialart.
    Unknown
    Company of Biologists
    In:  Journal of Experimental Biology , 150 . pp. 407-424.
    Publication Date: 2020-07-24
    Description: The in vitro oxygen-binding characteristics of haemocyanin were investigated in whole blood of two species of pelagic squid, Illex illecebrosus and Loligo pealei. pH-independent Haldane coefficients (ΔHCO3−/ΔHcyO2) (where HcyO2 is haemocyanin-bound oxygen) slightly smaller than —1 were found in both species. Oxygen-linked CO2 binding was not present. Buffer values ranged between 5 and 5.8 m mol l−1pH unit−1. For further analyses a pH/saturation diagram was selected to show the effect of pH on oxygen binding at constant POO2 in a continuous plot. The slopes of the resulting oxygen isobars (ΔHcyO2/ΔpH or ΔS/ΔpH) (where S is oxygen saturation) depend on pH. The diagram allows evaluation of both the Bohr coefficients (ΔlogP50/ΔpH) and the Hill coefficients (n50) at specific pH values. It provides an integrated illustration of the importance of the Bohr effect and cooperativity for oxygen binding. In accordance with Wyman's linkage equation, Bohr and Haldane coefficients are found to be identical. Both are pH-independent between pH7 and 8. The changing slopes of the oxygen isobars are likely to reflect changes in cooperativity with pH. Maximum values of n50 coincide with maximum steepness of the oxygen isobars in the physiological range of pH and POO2. Assuming that the haemocyanin acts as a buffer for venous POO2, this maximum in pH sensitivity and its decrease in the higher and lower pH ranges are discussed in the light of the maintenance of pigment function in vivo.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Company of Biologists
    In:  Journal of Experimental Biology, 215 (17). pp. 2992-3000.
    Publication Date: 2021-08-30
    Description: In the eurythermal cuttlefish Sepia officinalis, performance greatly depends on hearts that ensure systemic oxygen supply over a broad range of temperatures. We therefore aimed to identify adjustments in energetic cardiac capacity and underlying mitochondrial function supporting thermal acclimation that could be critical for the cuttlefish's competitive success in variable environments. Two genetically distinct cuttlefish populations were acclimated to 11°C, 16°C and 21°C, respectively. Subsequently, skinned and permeabilised heart fibres were used to assess mitochondrial functioning by means of high-resolution respirometry and a substrate-inhibitor protocol, followed by measurements of cardiac citrate synthase activity. In cuttlefish hearts, thermal sensitivity of mitochondrial substrate oxidation was high for proline and pyruvate but low for succinate. Oxygen efficiency of catabolism rose from 11°C to 21°C via shifts to oxygen-conserving oxidation of proline and pyruvate as well as via reduced proton leak. Acclimation to 21°C decreased mitochondrial complex I activity in Adriatic cuttlefish and increased complex IV activity in English Channel cuttlefish. However, compensation of mitochondrial capacities did not occur during cold acclimation to 11°C. Moreover, cold adapted English Channel cuttlefish had larger hearts with lower mitochondrial capacities than warm adapted Adriatic cuttlefish. The changes observed for substrate oxidation, mitochondrial complexes, proton leak or heart weights improve energetic efficiency and essentially seem to extend tolerance to high temperatures and reduce associated tissue hypoxia. We conclude that cuttlefish sustain cardiac performance and thus, systemic oxygen delivery over short and long-term changes of temperature and environmental conditions by multiple adjustments in cellular and mitochondrial energetics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COMPANY OF BIOLOGISTS LTD
    In:  EPIC3Journal of Experimental Biology, COMPANY OF BIOLOGISTS LTD, 220(15), pp. 2685-2696, ISSN: 0022-0949
    Publication Date: 2019-07-16
    Description: Observations of climate impacts on ecosystems highlight the need for an understanding of organismal thermal ranges and their implications at the ecosystem level. Where changes in aquatic animal populations have been observed, the integrative concept of oxygen- and capacitylimited thermal tolerance (OCLTT) has successfully characterised the onset of thermal limits to performance and field abundance. The OCLTT concept addresses the molecular to whole-animal mechanisms that define thermal constraints on the capacity for oxygen supply to the organism in relation to oxygen demand. The resulting ‘total excess aerobic power budget’ supports an animal’s performance (e.g. comprising motor activity, reproduction and growth) within an individual’s thermal range. The aerobic power budget is often approximated through measurements of aerobic scope for activity (i.e. the maximumdifference between resting and the highest exerciseinduced rate of oxygen consumption), whereas most animals in the field rely on lower (i.e. routine) modes of activity. At thermal limits, OCLTT also integrates protective mechanisms that extend time-limited tolerance to temperature extremes – mechanisms such as chaperones, anaerobic metabolism and antioxidative defence. Here, we briefly summarise the OCLTT concept and update it by addressing the role of routine metabolism.We highlight potential pitfalls in applying the concept and discuss the variables measured that led to the development ofOCLTT.We propose that OCLTTexplains why thermal vulnerability is highest at the whole-animal level and lowest at the molecular level. We also discuss how OCLTT captures the thermal constraints on the evolution of aquatic animal life and supports an understanding of the benefits of transitioning from water to land.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    COMPANY OF BIOLOGISTS LTD
    In:  EPIC3Journal of Experimental Biology, COMPANY OF BIOLOGISTS LTD, pp. jeb.147108, ISSN: 0022-0949
    Publication Date: 2017-02-15
    Description: According to the Membrane Pacemaker Theory of metabolism (MPT) allometric scaling of metabolic rate in animals is determined by the composition of cellular and mitochondrial membranes that changes with body size in a predictable manner. MPT has been elaborated from interspecific comparisons in mammals. It projects that the degree of unsaturation of membrane phospholipids decreases in larger organisms, thereby lowering ion permeability of the membranes and making cellular and thus whole animal metabolism more efficient. Here we tested the applicability of the MPT to a marine ectotherm, the mussel Mytilus edulis at the intraspecific level. We determined effects of body mass on whole organism, tissue and cellular oxygen consumption rates, on heart rate, metabolic enzyme activities and on the lipid composition of membranes. In line with allometric patterns the organismal functions and processes such as heart rate, whole animal respiration rate and phospholipid contents showed a mass-dependent decline. However, the allometry of tissue and cellular respiration and activity of metabolic enzymes was poor; fatty acid unsaturation of membrane phospholipids of gill tissue was independent of animal size. It is thus conceivable that most of the metabolic allometry observed at the organismal level is determined by systemic functions. These whole organism patterns may be supported by energy savings associated with growing cell size but not by structural changes in membranes. Overall, the set of processes contributing to metabolic allometry in ectotherms may differ from that operative in mammals and birds, with a reduced involvement of the mechanisms proposed by the MPT.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    COMPANY OF BIOLOGISTS LTD
    In:  EPIC3Journal of Experimental Biology, COMPANY OF BIOLOGISTS LTD, 215, pp. 2992-3000, ISSN: 0022-0949
    Publication Date: 2019-07-16
    Description: In the eurythermal cuttlefish Sepia officinalis, performance depends on hearts that ensure systemic oxygen supply over a broad range of temperatures. We therefore aimed to identify adjustments in energetic cardiac capacity and underlying mitochondrial function supporting thermal acclimation and adaptation that could be critical for the cuttlefish’s competitive success in variable environments. Two genetically distinct cuttlefish populations were acclimated to 11°C, 16°C and 21°C, respectively. Subsequently, skinned and permeabilised heart fibres were used to assess mitochondrial functioning by means of high-resolution respirometry and a substrate-inhibitor protocol, followed by measurements of cardiac citrate synthase and cytosolic enzyme activities. Temperate English Channel cuttlefish had lower mitochondrial capacities but larger hearts than subtropical Adriatic cuttlefish. Warm acclimation to 21°C decreased mitochondrial complex I activity in Adriatic cuttlefish and increased complex IV activity in English Channel cuttlefish. However, compensation of mitochondrial capacities did not occur during cold acclimation to 11°C. In systemic hearts, thermal sensitivity of mitochondrial substrate oxidation was high for proline and pyruvate but low for succinate. Oxygen efficiency of catabolism rose from 11°C to 21°C via shifts to oxygen-conserving oxidation of proline and pyruvate and via reduced relative proton leak. The changes observed for substrate oxidation, mitochondrial complexes, relative proton leak or heart weights improve energetic efficiency and essentially seem to extend tolerance to high temperatures and reduce associated tissue hypoxia. We conclude that cuttlefish sustain cardiac performance and thus, systemic oxygen delivery over short and long-term changes of temperature and environmental conditions by multiple adjustments in cellular and mitochondrial energetics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-13
    Description: The jumbo squid, Dosidicus gigas, can survive extended forays into the oxygen minimum zone (OMZ) of the Eastern Pacific Ocean. Previous studies have demonstrated reduced oxygen consumption and a limited anaerobic contribution to ATP production, suggesting the capacity for substantial metabolic suppression during hypoxic exposure. Here, we provide a more complete description of energy metabolism and explore the expression of proteins indicative of transcriptional and translational arrest that may contribute to metabolic suppression. We demonstrate a suppression of total ATP demand under hypoxic conditions (1% oxygen, PO2=0.8 kPa) in both juveniles (52%) and adults (35%) of the jumbo squid. Oxygen consumption rates are reduced to 20% under hypoxia relative to air-saturated controls. Concentrations of arginine phosphate (Arg-P) and ATP declined initially, reaching a new steady state (~30% of controls) after the first hour of hypoxic exposure. Octopine began accumulating after the first hour of hypoxic exposure, once Arg-P breakdown resulted in sufficient free arginine for substrate. Octopine reached levels near 30 mmol g−1 after 3.4 h of hypoxic exposure. Succinate did increase through hypoxia but contributed minimally to total ATP production. Glycogenolysis in mantle muscle presumably serves to maintain muscle functionality and balance energetics during hypoxia. We provide evidence that post-translational modifications on histone proteins and translation factors serve as a primary means of energy conservation and that select components of the stress response are altered in hypoxic squids. Reduced ATP consumption under hypoxia serves to maintain ATP levels, prolong fuel store use and minimize the accumulation of acidic intermediates of anaerobic ATP-generating pathways during prolonged diel forays into the OMZ. Metabolic suppression likely limits active, daytime foraging at depth in the core of the OMZ, but confers an energetic advantage over competitors that must remain in warm, oxygenated surface waters. Moreover, the capacity for metabolic suppression provides habitat flexibility as OMZs expand as a result of climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...