GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PERGAMON-ELSEVIER SCIENCE LTD  (2)
  • Wiley  (2)
  • Alfred Wegener Institute for Polar and Marine Research  (1)
  • 1
    Publication Date: 2022-02-18
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The collection of zooplankton swimmers and sinkers in time-series sediment traps provides unique insight into year-round and interannual trends in zooplankton population dynamics. These samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice-covered season are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180–280, 800–1320, and 2320–2550 m, over a period of 16 yr (2000–2016) at the Long-Term Ecological Research observatory HAUSGARTEN located in the eastern Fram Strait (79°N, 4°E). The time-series data showed seasonal and interannual trends within the dominant zooplankton groups including copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha. Amphipoda and copepoda dominated the abundance of swimmers while pteropoda and foraminifera were the most important sinkers. Although the seasonal occurrence of these groups was relatively consistent between years, there were notable interannual variations in abundance, suggesting the influence of various environmental conditions such as sea-ice dynamic and lateral advection of water masses, for example, meltwater and Atlantic water. Statistical analyses revealed a correlation between the Arctic dipole climatic index and sea-ice dynamics (i.e., ice coverage and concentration), as well as the importance of the distance from the ice edge on swimmer composition patterns and carbon export.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-20
    Description: A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August–September 2012. Sediment traps were deployed at 2–5 m and 20–25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Deep-Sea Research Part I-Oceanographic Research Papers, PERGAMON-ELSEVIER SCIENCE LTD, 103, pp. 86-100, ISSN: 0967-0637
    Publication Date: 2016-11-03
    Description: Current meters measured temperature and velocity on 12 moorings from 1997 to 2014 in the deep Fram Strait between Svalbard and Greenland at the only deep passage from the Nordic Seas to the Arctic Ocean. The sill depth in Fram Strait is 2545 m. The observed temperatures vary between the colder Greenland Sea Deep Water and the warmer Eurasian Basin Deep Water. Both end members show a linear warming trend of 0.11±0.02°C/decade (GSDW) and 0.05±0.01°C/decade (EBDW) in agreement with the deep water warming observed in the basins to the north and south. At the current warming rates, GSDW and EBDW will reach the same temperature of -0.71°C in 2020. The deep water on the approximately 40 km wide plateau near the sill in Fram Strait is a mixture of the two end members with both contributing similar amounts. This water mass is continuously formed by mixing in Fram Strait and subsequently exported out of Fram Strait. Individual measurements are approximately normally distributed around the average of the two end members. Meridionally, the mixing is confined to the plateau region. Measurements less than 20 km to the north and south have properties much closer to the properties in the respective basins (Eurasian Basin and Greenland Sea) than to the mixed water on the plateau. The temperature distribution around Fram Strait indicates that the mean flow cannot be responsible for the deep water exchange across the sill. Rather, a coherence analysis shows that energetic mesoscale flows with periods of approximately 1-2 weeks advect the deep water masses across Fram Strait. These flows appear to be barotropically forced by upper ocean mesoscale variability. We conclude that these mesoscale flows make Fram Strait a hot spot of deep water mixing in the Arctic Mediterranean. The fate of the mixed water is not clear, but after the 1990s, it does not reflect the properties of Norwegian Sea Deep Water. We propose that it currently mostly fills the deep Greenland Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Progress In Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, 109, pp. 70-77, ISSN: 0079-6611
    Publication Date: 2014-10-07
    Description: As part of the HAUSGARTEN long-term observatory, sediment trap deployments were carried out before, during, and after the anomalously warm Atlantic Water inflow observed from 2005 to 2007 in the eastern Fram Strait. Downward export of particulate organic carbon (POC), zooplankton fecal pellet carbon (FPC), and biogenic particulate silica (bPSi) were measured from August 2002 to June 2003 and from July 2004 to July 2008 to indirectly assess the impact of the warm anomaly on phytoplankton and zooplankton communities in the region. Lower and less frequent bPSi fluxes were observed during most of the warm anomaly period, reflecting a shift in phytoplankton community composition towards dominance of small-sized phytoplankton under warmer conditions. Lower FPC fluxes observed concurrently with the lower bPSi fluxes may indicate a decrease in fecal pellet production due to changing feeding conditions. In addition, the export of smaller fecal pellets in fall 2005 and spring 2006 suggests a dominance of smaller zooplankton during the warm anomaly. Nonetheless, bPSi and FPC export always increased in the presence of ice cover in the area above the sediment trap, even during the warm anomaly period, suggesting that sea ice is a key factor influencing the frequency of export events in the eastern Fram Strait. The scarcity of ice over the sampling area in 2005 and 2006 may partly be due to the warm anomaly, although solar radiation and ice drift due to wind stress also govern ice cover extent in the region. Overall, the warm anomaly resulted in a shift in the composition of the export fluxes when associated with an absence of ice cover in the eastern Fram Strait.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...