GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Report ; Dissertation ; Hochschulschrift ; Brasilien Nord ; Mangrove ; Auswaschung ; Stoffstrom
    Type of Medium: Book
    Pages: X, 229 S , graph. Darst., Kt
    Series Statement: ZMT-contributions 5
    Language: English , German
    Note: Zsfassung in deutscher Spr. S. IX - X , Zugl.: Bremen, Univ., Diss.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-23
    Description: In contrast to clear stimulatory effects of rising temperature, recent studies of the effects of CO2 on planktonic bacteria have reported conflicting results. To better understand the potential impact of predicted climate scenarios on the development and performance of bacterial communities, we performed bifactorial mesocosm experiments (pCO2 and temperature) with Baltic Sea water, during a diatom dominated bloom in autumn and a mixed phytoplankton bloom in summer. The development of bacterial community composition (BCC) followed well-known algal bloom dynamics. A principal coordinate analysis (PCoA) of bacterial OTUs (operational taxonomic units) revealed that phytoplankton succession and temperature were the major variables structuring the bacterial community whereas the impact of pCO2 was weak. Prokaryotic abundance and carbon production, and organic matter concentration and composition were partly affected by temperature but not by increased pCO2. However, pCO2 did have significant and potentially direct effects on the relative abundance of several dominant OTUs; in some cases, these effects were accompanied by an antagonistic impact of temperature. Our results suggest the necessity of high-resolution BCC analyses and statistical analyses at the OTU level to detect the strong impact of CO2 on specific bacterial groups, which in turn might also influence specific organic matter degradation processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Lateral fluxes (i.e., outwelling) of dissolved organic (DOC) and inorganic (DIC) carbon and total alkalinity were estimated using radium isotopes at the groundwater, mangrove creek, and continental shelf scales in the Amazon region. Observations of salinity and radium isotopes in the creek indicated tidally driven groundwater exchange as the main source of carbon. Radium-derived transport rates indicate that mangrove carbon is exported out of the continental shelf on timescales of 22 ± 7 d. Bicarbonate was the main form (82% ± 11%) of total dissolved carbon in all samples, followed by DOC (13% ± 12%) and CO2 (5% ± 4%). DIC (18.7 ± 15.7 mmol m−2 d−1) exceeded DOC (3.0 ± 4.1 mmol m−2 d−1) outwelling at all spatial scales. The interpretation of outwelling across the mangrove-ocean continuum is related to the spatial and temporal scales investigated. At all scales, outwelling represented a major coastal carbon pathway driving bicarbonate storage in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-15
    Description: With almost 700 Pg of carbon, marine dissolved organic carbon (DOC) stores more carbon than all living biomass on Earth combined. However, the controls behind the persistence and the spatial patterns of DOC concentrations on the basin scale remain largely unknown, precluding quantitative assessments of the fate of this large carbon pool in a changing climate. Net removal rates of DOC along the overturning circulation suggest lifetimes of millennia. These net removal rates are in stark contrast to the turnover times of days to weeks of heterotrophic microorganisms, which are the main consumers of organic carbon in the ocean. Here, we present a dynamic “MICrobial DOC” model (MICDOC) with an explicit representation of picoheterotrophs to test whether ecological mechanisms may lead to observed decadal to millennial net removal rates. MICDOC is in line with 〉40,000 DOC observations. Contrary to other global models, the reactivity of DOC fractions is not prescribed, but emerges from a dynamic feedback between microbes and DOC governed by carbon and macronutrient availability. A colimitation of macronutrients and organic carbon on microbial DOC uptake explains 〉70% of the global variation of DOC concentrations, and governs characteristic features of its distribution. Here, decadal to millennial net removal rates emerge from microbial processes acting on time scales of days to weeks, suggesting that the temporal variability of the marine DOC inventory may be larger than previously thought. With MICDOC, we provide a foundation for assessing global effects on DOC related to changes in heterotrophic microbial communities in a future ocean Plain Language Summary The ocean stores more carbon as dissolved organic compounds (DOC) than all animals and plants on land and the oceans combined. However, numerical models used for future climate scenarios lack an implementation of processes transforming DOC back to CO 2 by marine microorganisms. Here, we present a global dynamical ocean model that explicitly considers the processes of DOC degradation by marine microorganisms. In the present ocean, the availability of organic carbon but also nitrogen and phosphorus control the amount of carbon stored as DOC, as the lack of these nutrients inhibits its degradation by bacteria. The identification of these ecological controls allows a quantitative assessment of the fate of this large carbon reservoir in the future. The findings indicate that the marine DOC reservoir is potentially more dynamic than previously thought, since decadal to millennial scale net removal rates might be a result of microbial processes acting on shorter time scales Key Points A model to reconcile millennial‐scale bulk dissolved organic carbon degradation rates and short‐term microbial turnover times is presented Macronutrient colimitation can explain observed concentration patterns of dissolved organic carbon in the surface ocean Continuous microbial reworking suggests a higher temporal variability of the marine dissolved organic matter inventory than previously thought
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-27
    Description: Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is one of the state-of-the-art methods to analyze complex natural organic mixtures. The precision of detected masses is crucial for molecular formula attribution. Random errors can be reduced by averaging multiple measurements of the same mass, but because of limited availability of ultrahigh-resolution mass spectrometers, most studies cannot afford analyzing each sample multiple times. Here we show that random errors can be eliminated also by averaging mass spectral data from independent environmental samples. By averaging the spectra of 30 samples analyzed on our 15 T instrument we reach a mass precision comparable to a single spectrum of a 21 T instrument. We also show that it is possible to accurately and reproducibly determine isotope ratios with FT-ICR-MS. Intensity ratios of isotopologues were improved to a degree that measured deviations were within the range of natural isotope fractionation effects. In analogy to δ13C in environmental studies, we propose Δ13C as an analytical measure for isotope ratio deviances instead of widely employed C deviances. In conclusion, here we present a simple tool, extensible to Orbitrap-based mass spectrometers, for postdetection data processing that significantly improves mass accuracy and the precision of intensity ratios of isotopologues at no extra cost.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMER CHEMICAL SOC
    In:  EPIC3Environmental Science & Technology, AMER CHEMICAL SOC, 54(1), pp. 195-206, ISSN: 0013-936X
    Publication Date: 2020-03-13
    Description: About 250 Tg of dissolved organic carbon are annually transported from inland waters to coastal systems making rivers a critical link between terrestrial and ocean carbon pools. During transport through fluvial systems, various biogeochemical processes selectively remove or transform labile material, effectively altering the composition of dissolved organic matter (DOM) exported to the ocean. The river continuum concept (RCC) has been historically used as a model to predict the fate and quality of organic matter along a river continuum. However, the conversion of natural landscapes for urban and agricultural practices can also alter the sources and quality of DOM exported from fluvial systems, and the RCC may be significantly limited in predicting DOM quality in anthropogenically impacted watersheds. Here, we studied DOM dynamics in the Altamaha River watershed in Georgia, USA, a fluvial system where headwater streams are highly impacted by anthropogenic activities. The primary goal of this study was to quantitatively assess the importance of both the RCC and land use as environmental drivers controlling DOM composition. Land use was a stronger predictor of spatial variation (∼50%) in DOM composition defined by both excitation–emission matrix–parallel factor analysis (EEM–PARAFAC) and ultrahigh-resolution mass spectrometry. This is compared to an 8% explained variability that can be attributed to the RCC. This study highlights the importance of incorporating land use among other controls into the RCC to better predict the fate and quality of DOM exported from terrestrial to coastal systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-21
    Description: Dissolved organic matter (DOM) is the largest organic carbon reservoir in the ocean and an integral component of biogeochemical cycles. The role of free-living microbes in DOM transformation has been studied thoroughly, whereas little attention has been directed towards the influence of benthic organisms. Sponges are efficient filter feeders and common inhabitants of many benthic communities circumglobally. Here, we investigated how two tropical coral reef sponges shape marine DOM. We compared bacterial abundance, inorganic and organic nutrients in off reef, sponge inhalant, and sponge exhalant water of Melophlus sarasinorum and Rhabdastrella globostellata. DOM and bacterial cells were taken up, and dissolved inorganic nitrogen was released by the two Indo-Pacific sponges. Both sponge species utilized a common set of 142 of a total of 3040 compounds detected in DOM on a molecular formula level via ultrahigh-resolution mass spectrometry. In addition, species-specific uptake was observed, likely due to differences in their associated microbial communities. Overall, the sponges removed presumably semi-labile and semi-refractory compounds from the water column, thereby competing with pelagic bacteria. Within minutes, sponge holobionts altered the molecular composition of surface water DOM (inhalant) into a composition similar to deep-sea DOM (exhalent). The apparent radiocarbon age of DOM increased consistently from off reef and inhalant to exhalant by about 900 14C years for M. sarasinorum. In the pelagic, similar transformations require decades to centuries. Our results stress the dependence of DOM lability definition on the respective environment and illustrate that sponges are hotspots of DOM transformation in the ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...