GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Mass-wasting -- Congresses. ; Electronic books.
    Description / Table of Contents: Submarine mass movements represent major offshore geohazards due to their destructive, tsunami-generating potential; dangers that will only increase as sea levels rise. This volume features the latest scientific research into their features and consequences.
    Type of Medium: Online Resource
    Pages: 1 online resource (763 pages)
    Edition: 1st ed.
    ISBN: 9789400721623
    Series Statement: Advances in Natural and Technological Hazards Research Series ; v.31
    Language: English
    Note: Intro -- Submarine Mass Movements and Their Consequences -- Contents -- Contributors -- Chapter 1: Submarine Mass Movements and Their Consequences -- 1.1 Introduction -- 1.2 Part I: Physical Properties of Sediments and Slope Stability Assessment -- 1.3 Part II: Seafloor Geomorphology for Trigger Mechanisms and Landslide Dynamics -- 1.4 Part III: Role of Fluid Flow in Slope Instability -- 1.5 Part IV: Mechanics of Mass-Wasting in Subduction Margins -- 1.6 Part V: Post-failure Dynamics -- 1.7 Part VI: Landslide Generated Tsunamis -- 1.8 Part VII: Witnessing and Quasi-Witnessing of Slope Failures -- 1.9 Part VIII: Architecture of Mass Transport Deposits/Complexes -- 1.10 Part IX: Relevance of Natural Climate Change in Triggering Slope Failures -- 1.11 Future Perspectives -- References -- Part I: Physical Properties of Sediments and Slope Stability Assessment -- Chapter 2: Risk Assessment for Earthquake-Induced Submarine Slides -- 2.1 Introduction -- 2.2 Stability of Submarine Slopes Under Earthquake Loading -- 2.3 Factors Influencing Soil Strength Under Seismic Loading -- 2.3.1 Rapid Loss of Shear Strength and Liquefaction Phenomenon -- 2.3.2 Special Considerations for Clay Slopes Under Earthquake Loading -- 2.3.3 Effect of High-Frequency Cyclic Loading on Static Shear Strength -- 2.3.4 Effect of Cyclic Loading on Undrained Creep -- 2.4 Risk Assessment for Submarine Slides -- 2.4.1 Probabilistic Slope Stability Assessment -- 2.4.2 Estimation of Annual Probability of Slope Failure -- 2.4.3 Interpretation of Computed Static Failure Probability in a Bayesian Framework -- 2.5 Recommended Calculation Procedure -- 2.6 Discussion and Conclusion -- References -- Chapter 3: Shallow Landslides and Their Dynamics in Coastal and Deepwater Environments, Norway -- 3.1 Introduction -- 3.2 Geological Setting -- 3.3 Data and Methods. , 3.4 Results - From Geomorphology to Soil Properties and Stability -- 3.4.1 Coastal Environment - Sørfjorden (Finneidfjord) -- 3.4.2 Intermediate Water Depths - Vesterålen Margin -- 3.4.3 Deepwater Setting - Lofoten Margin -- 3.5 Discussion and Conclusions -- References -- Chapter 4: Physical Properties and Age of Continental Slope Sediments Dredged from the Eastern Australian Continental Margin - Implications for Timing of Slope Failure -- 4.1 Introduction -- 4.2 Study Area -- 4.3 Results -- 4.3.1 Dredged Materials - Sedimentology and Geomechanical Properties -- 4.3.2 Palaeontology/Dating -- 4.3.3 Geomechanical Modeling -- 4.4 Discussion and a Hypothesis -- References -- Chapter 5: Submarine Landslides on the Upper Southeast Australian Passive Continental Margin - Preliminary Findings -- 5.1 Introduction -- 5.1.1 Study Area -- 5.2 Data and Methods -- 5.2.1 Bathymetry and Slide Geometry -- 5.2.2 Sediment Properties -- 5.3 Results and Interpretation -- 5.3.1 Sediment Properties -- 5.3.2 14 C Radiocarbon Ages -- 5.4 Modeling -- 5.5 Conclusions -- References -- Chapter 6: Development and Potential Triggering Mechanisms for a Large Holocene Landslide in the Lower St. Lawrence Estuary -- 6.1 Introduction -- 6.1.1 Objectives -- 6.2 Data and Methods -- 6.3 Morphology of the Betsiamites Slide Complex -- 6.4 Lithostratigraphy and Failure Surface -- 6.5 Movement Development -- 6.6 Triggering Mechanisms -- 6.7 Concluding Remarks and Future Work -- References -- Chapter 7: Spatially Fixed Initial Break Point and Fault-Rock Development in a Landslide Area -- 7.1 Introduction -- 7.2 Setting -- 7.3 Methods -- 7.3.1 Tilt and Groundwater Level Measurement -- 7.3.2 Core Analysis -- 7.3.3 Detailed Monitoring During Slipa -- 7.4 Results -- 7.4.1 Dilation and Slip -- 7.4.2 Core Analysis -- 7.5 Summary -- References. , Chapter 8: Pore Water Geochemistry as a Tool for Identifying and Dating Recent Mass-Transport Deposits -- 8.1 Introduction -- 8.2 Study Area -- 8.3 Material and Methods -- 8.4 Results and Discussion -- 8.4.1 Pore Water Profiles at Potential MTD Sites -- 8.4.2 Geochemical Transport/Reaction Modeling -- 8.5 Conclusions -- References -- Chapter 9: An In-Situ Free-Fall Piezocone Penetrometer for Characterizing Soft and Sensitive Clays at Finneidfjord (Northern Norway) -- 9.1 Introduction -- 9.2 Setting -- 9.3 Material and Methods -- 9.4 Results -- 9.4.1 Comparison of FF-CPTU and Pushed CPTU Tests -- 9.4.2 Laboratory Analyses -- 9.4.3 Comparison of In-Situ and Laboratory Results -- 9.5 Discussion and Conclusion -- References -- Chapter 10: Static and Cyclic Shear Strength of Cohesive and Non-cohesive Sediments -- 10.1 Introduction -- 10.2 Methods -- 10.2.1 Research Approach -- 10.2.2 Sample Description -- 10.2.3 Testing Procedure -- 10.2.4 Data Acquisition and Analysis -- 10.3 Results and Discussion -- 10.3.1 Exemplary Cyclic Test Results -- 10.3.2 Generic Study -- 10.3.3 Case Study -- 10.4 Conclusion -- References -- Chapter 11: Upstream Migration of Knickpoints: Geotechnical Considerations -- 11.1 Introduction -- 11.2 Experimental Setup and Method -- 11.3 Results -- 11.4 Discussion -- 11.5 Conclusion -- References -- Part II: Seafloor Geomorphology for Trigger Mechanisms and Landslide Dynamics -- Chapter 12: A Reevaluation of the Munson-Nygren-Retriever Submarine Landslide Complex, Georges Bank Lower Slope, Western North Atlantic -- 12.1 Introduction -- 12.1.1 Data -- 12.2 Results and Interpretations -- 12.2.1 Munson-Nygren Slide -- 12.2.2 Retriever Slide -- 12.2.3 Picket Slide -- 12.3 Age of Slope Failure -- References -- Chapter 13: Submarine Landslides in Arctic Sedimentation: Canada Basin -- 13.1 Introduction -- 13.1.1 Regional Geology. , 13.1.2 Methods -- 13.2 Results -- 13.2.1 Canadian Archipelago Slope and Rise -- 13.2.2 MacKenzie-Beaufort Slope and Rise -- 13.3 Discussion and Conclusions -- References -- Chapter 14: Extensive Erosion of the Deep Seafloor - Implications for the Behavior of Flows Resulting from Continental Slope Instability -- 14.1 Introduction -- 14.2 Areas of Erosion by Gravity Currents -- 14.3 Areas of Deposition from Gravity Currents -- 14.4 Discussion -- 14.5 Conclusions -- References -- Chapter 15: Investigations of Slides at the Upper Continental Slope Off Vesterålen, North Norway -- 15.1 Introduction -- 15.2 Database -- 15.3 Landforms and Geological Setting -- 15.4 Results -- 15.4.1 Morphological Features -- 15.4.2 Seismic Stratigraphy, Slides and Failure Planes -- 15.4.3 X-Ray Images, Core Logging and Soil Mechanical Testing -- 15.5 Discussion -- 15.6 Summary and Conclusions -- References -- Chapter 16: Dakar Slide Offshore Senegal, NW-Africa: Interaction of Stacked Giant Mass Wasting Events and Canyon Evolution -- 16.1 Introduction -- 16.1.1 Structural Setting -- 16.1.2 Data -- 16.2 Results -- 16.2.1 Seismic Units and Stratigraphy -- 16.2.2 Dakar Slide -- 16.2.3 Older MTDs -- 16.2.4 Dakar Canyon -- 16.2.5 Sedimentary Ridges -- 16.3 Discussion -- 16.3.1 Dakar Slide: Age and Type of Failure -- 16.3.2 History of Mass Wasting Off Southern Senegal -- 16.3.3 Interaction Between Slope Failures and Canyons -- 16.4 Conclusion -- References -- Chapter 17: Large-Scale Mass Wasting on the Northwest African Continental Margin: Some General Implications for Mass Wasting on Passive Continental Margins -- 17.1 Introduction -- 17.2 Results and Interpretations -- 17.2.1 Sahara Slide -- 17.2.2 Cap Blanc Slide -- 17.2.3 Mauritania Slide Complex -- 17.2.4 Dakar Slide -- 17.3 Discussion -- 17.3.1 Mass Wasting Off Northwest Africa: Where and Why?. , 17.3.2 Timing of Landslides and Geohazard Potential -- 17.4 Conclusions -- References -- Chapter 18: Deep-Seated Bedrock Landslides and Submarine Canyon Evolution in an Active Tectonic Margin: Cook Strait, New Zealand -- 18.1 Introduction -- 18.2 Data Sets and Methodology -- 18.3 Results -- 18.3.1 Submarine Canyon Morphology -- 18.3.2 Landslides -- 18.3.2.1 Morphological Characteristics -- 18.3.2.2 Distribution -- 18.4 Discussion and Conclusions -- 18.4.1 Nature of Landslides -- 18.4.2 Causes of Landslides -- 18.4.3 Spatial Distribution of Landslides -- 18.4.4 Role of Landslides in Canyon Evolution -- References -- Chapter 19: Polyphase Emplacement of a 30 km 3 Blocky Debris Avalanche and Its Role in Slope-Gully Development -- 19.1 Introduction -- 19.2 Tectonic and Sedimentary Setting -- 19.3 Data and Methods -- 19.4 Stratigraphic and Morphological Analyses -- 19.5 PDA Emplacement and Upper Slope Gully Development -- 19.6 Summary -- References -- Chapter 20: Slope Failure and Canyon Development Along the Northern South China Sea Margin -- 20.1 Introduction -- 20.2 Regional Setting -- 20.3 Data and Methods -- 20.4 Results -- 20.4.1 Canyon Morphology -- 20.4.2 Slope Failure Features -- 20.5 Discussion -- 20.5.1 Canyon Origin -- 20.5.2 Implications for Geohazard Risk -- References -- Chapter 21: Distinguishing Sediment Bedforms from Sediment Deformation in Prodeltas of the Mediterranean Sea -- 21.1 Introduction -- 21.1.1 Regional Setting -- 21.1.2 Methods -- 21.2 Results -- 21.2.1 Morphology of Undulated Prodeltas -- 21.2.2 Seismostratigraphy of Prodelta Undulations -- 21.2.3 Physical Properties of Prodelta Undulations -- 21.2.4 Sediment Transport Processes on Undulated Prodeltas -- 21.3 Discussion and Conclusion -- References -- Chapter 22: Hydroacoustic Analysis of Mass Wasting Deposits in Lake Ohrid (FYR Macedonia/Albania) -- 22.1 Introduction. , 22.2 Seismic Stratigraphy and Slide Bodies.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 62 (1979), S. 2860-2866 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The chemistry of the 2-aminospiro[indan-1,3′-pyrrolidine]system2-Aminospir[indan-1,3′-pyrrolidines] 1 are easily synthesized from the α-hydroxyiminoketones 6 and 19 (Schemes 2 and 3, and 6 respectively). Removal of the N-acetyl group in the intermediate 8 of the trans series induces transposition to the 3a-aminomethyl-indano[2,1-b]pyrrolidine system. The configurations of all compounds have been determined by 1H-NMR. spectroscopy.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 71 (1988), S. 1156-1176 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Based on the substrate specificity for 5-lipoxygenase and the known stereochemical course of the reaction, a hypothetical model of the enzyme active site was developed and used to design 2 types of selective inhibitors of 5-lipoxygenase. Both inhibitor types used aromatic rings in place of (Z)-olefins of the substrate and were designed to mimic the nonpolar end of arachidonic acid. One inhibitor type used a carboxylic-acid interaction with the O-binding centre of the enzyme in analogy with known cyclooxygenase inhibitors, whereas a second type employed a hydroxylamine function to interact with a presumed tyrosine or cysteinyl radical predicted to be in the enzyme active site. Selective 5-lipoxygenase inhibitors were 7-(hexyloxy) naphthalene-2-acetic acid (1) and N-methyl;-N(7-propoxynaphthalene-2-ethyl)hydroxylamine (2). Structure-activity relationships for both types of inhibitors are discussed.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 102 (1969), S. 1928-1936 
    ISSN: 0009-2940
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Es wird über die Darstellung und das thermische Verhalten von Verbindungen mit dem 3.4-Diaza-bicyclooctadien- und -trien-Ringgerüst berichtet. Die Ergebnisse sprechen dafür, daß valenztautomere Gleichgewichte der Art 1 ⇌ 2 und 3 ⇌ 4 vorliegen, die Konzentration der monocyclischen Tautomeren aber so klein ist, daß diese nicht direkt nachgewiesen werden können.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Assessing frequency and extent of mass movement at continental margins is crucial to evaluate risks for offshore constructions and coastal areas. A multidisciplinary approach including geophysical, sedimentological, geotechnical, and geochemical methods was applied to investigate multistage mass transport deposits (MTDs) off Uruguay, on top of which no surficial hemipelagic drape was detected based on echosounder data. Nonsteady state pore water conditions are evidenced by a distinct gradient change in the sulfate (SO42−) profile at 2.8 m depth. A sharp sedimentological contact at 2.43 m coincides with an abrupt downward increase in shear strength from ∼10 to 〉20 kPa. This boundary is interpreted as a paleosurface (and top of an older MTD) that has recently been covered by a sediment package during a younger landslide event. This youngest MTD supposedly originated from an upslope position and carried its initial pore water signature downward. The kink in the SO42− profile ∼35 cm below the sedimentological and geotechnical contact indicates that bioirrigation affected the paleosurface before deposition of the youngest MTD. Based on modeling of the diffusive re-equilibration of SO42− the age of the most recent MTD is estimated to be 〈30 years. The mass movement was possibly related to an earthquake in 1988 (∼70 km southwest of the core location). Probabilistic slope stability back analysis of general landslide structures in the study area reveals that slope failure initiation requires additional ground accelerations. Therefore, we consider the earthquake as a reasonable trigger if additional weakening processes (e.g., erosion by previous retrogressive failure events or excess pore pressures) preconditioned the slope for failure. Our study reveals the necessity of multidisciplinary approaches to accurately recognize and date recent slope failures in complex settings such as the investigated area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...