GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
Publisher
Language
Years
Year
  • 1
    Type of Medium: Book
    Pages: II, S. 705 - 982 , 1 CD-ROM-App.
    Series Statement: Deep-sea research 41,4/6
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-2959
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Dissolved oxygen concentration, which is often measured inestuaries to quantify the results of and stresses associatedwith eutrophication, can be highly variable with time of dayand tidal stage. To assess how well dissolved oxygenconditions are characterized by typical monitoring programs,we conducted Monte Carlo sampling from 16 semi-continuous,31-day dissolved oxygen records collected from estuaries alongthe Atlantic and Gulf coasts to mimic three samplingstrategies: (1) systematic point-in-time sampling, (2) randompoint-in-time sampling, and (3) short-term continuous records.These strategies were evaluated for their accuracy inestimating mean oxygen concentration, minimum oxygenconcentration, and percent of time below a threshold value of2 ppm. Mean dissolved oxygen concentration was most accuratelyestimated in both estuarine regions by random point-in-timesampling, but this strategy required more than ten samplingsper month for the estimate to be within 0.5 ppm on 50% of thesimulations. Short-term continuous sampling (24–48 h)correctly identified estuaries in the Gulf of Mexico regionwhere dissolved oxygen concentrations of less than 2 ppm wereexperienced greater than 20% of the time. However, largetidal variations in Atlantic coast estuaries showed thismeasure to be inaccurate in these estuarine environments. Noneof the sampling strategies correctly identified month-longoxygen minima within 0.5 ppm for more than 50% of thesimulations. This inability to characterize correctlydissolved oxygen conditions could add significant uncertaintyto risk assessments, waste load allocation models, and otherwater quality evaluations that are the basis for developingwastewater treatment strategies and requirements. Perhaps moreimportantly, the inaccuracy with which conventional samplingprocedures characterize minimum dissolved oxygen valuessuggests that the extent of hypoxia in estuarine waters inbeing substantially underestimated.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...