GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 47 (2000), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . Eighteen strains of flagellated protists representing nine species were isolated and cultured from four deep-sea hydrothermal vents: Juan de Fuca Ridge (2,200 m), Guaymas Basin (2,000 m), 21° N (2,550 m) and 9° N (2,000 m). Light and electron microscopy were used to identify flagellates to genus and, when possible, species. The small subunit ribosomal RNA genes of each vent species and related strains from shallow-waters and the American Type Culture Collection were sequenced then used for comparative analysis with database sequences to place taxa in an rDNA tree. The hydrothermal vent flagellates belonged to six different taxonomic orders: the Ancyromonadida, Bicosoecida, Cercomonadida, Choanoflagellida, Chrysomonadida, and Kinetoplastida. Comparative analysis of vent isolate and database sequences resolved systematic placement of some well-known species with previously uncertain taxonomic affinities, such as Ancyromonas sigmoides, Caecitellus parvulus and Maxxixteria marina. Many of these vent isolates are ubiquitous members of marine, freshwater, and terrestrial ecosystems worldwide, suggesting a global distribution of these flagellate species.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1432
    Keywords: Key words: Protozoa — Flagellate —Ancyromonas—Apusomonas— Opisthokont — 18S small subunit ribosomal DNA — Phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Molecular and morphological evidence points to the ancyromonad Ancyromonas as a plausible candidate for the closest relative to the common ancestor of metazoans, fungi, and choanoflagellates (the Opisthokonta). Using 18S rDNA sequences from most of the major eukaryotic lineages, maximum-likelihood, minimum-evolution, and maximum-parsimony analyses yielded congruent phylogenies supporting this hypothesis. Combined with ultrastructural similarities between Ancyromonas and opisthokonts, the evidence presented here suggests that Ancyromonas may form an independent lineage, the Ancyromonadida Cavalier-Smith 1997, closer in its relationship to the opisthokonts than is its nearest protist relatives, the Apusomonadida. However, the very low bootstrap support for deep nodes and hypothesis testing indicate that the resolving power of 18S rDNA sequences is limited for examining this aspect of eukaryotic phylogeny. Alternate branching positions for the Ancyromonas lineage cannot be robustly rejected, revealing the importance of ultrastructure when examining the origins of multicellularity. The future use of a multigene approach may additionally be needed to resolve this aspect of eukaryotic phylogeny.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...