GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1995-1999  (1)
Document type
Publisher
Years
Year
  • 1
    ISSN: 1573-5117
    Keywords: Heteronemertea ; genetic differentiation ; North Atlantic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Specimens of the common intertidal nemerteans Lineus ruber and L. viridis were collected fromsites along the west and Southwest coasts of Britain,northern France and North America. Allele frequenciesof up to 13 putative enzyme loci were estimated forall populations of L. ruber and L.viridis. Estimates of genetic variation were low forpopulations of L. ruber (Hobs 0.008–0.052)but were higher for populations of L. viridis(Hobs 0.068–0.153). Exacttests for conformity of observed genotype frequenciesto those expected under Hardy-Weinberg equilibriumfailed to detect significant deviations for L.ruber or L. viridis. F-statistics wereaffected by small sample size and low expected valuesin some populations, but, FST wassignificantly different from zero for most lociexamined for both Lineus ruber and L.viridis. This indicated a significant degree ofpopulation structuring for both species (only amoderate level of gene-flow). Intraspecificcomparisons of genetic distance and genetic identityshowed little evidence of genetic differentiationbetween populations separated by large geographicdistances (1000s of km). There was no apparentrelationship between genetic distance betweenpopulations and the geographic distance separatingthem. Possible explanations for this lack of geneticdifferentiation between populations of L. ruberand L. viridis are discussed. These include alack of variation in the enzyme loci sampled caused bypopulation dynamics, balancing selection in the enzymeloci sampled, large introductions between populationsand passive dispersal.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 47 (1-2). pp. 119-148.
    Publication Date: 2021-07-22
    Description: Many studies on the deep-sea benthic biota have shown that the most species-rich areas lie on the continental margins between 500 and 2500 m, which coincides with the present oxygen-minimum in the world's oceans. Some species have adapted to hypoxic conditions in oxygen-minimum zones, and some can even fulfil all their energy requirements through anaerobic metabolism for at least short periods of time. It is, however, apparent that the geographic and vertical distribution of many species is restricted by the presence of oxygen-minimum zones. Historically, cycles of global warming and cooling have led to periods of expansion and contraction of oxygen-minimum layers throughout the world's oceans. Such shifts in the global distribution of oxygen-minimum zones have presented many opportunities for allopatric speciation in organisms inhabiting slope habitats associated with continental margins, oceanic islands and seamounts. On a smaller scale, oxygen-minimum zones can be seen today as providing a barrier to gene-flow between allopatric populations. Recent studies of the Arabian Sea and in other regions of upwelling also have shown that the presence of an oxygen-minimum layer creates a strong vertical gradient in physical and biological parameters. The reduced utilisation of the downward flux of organic material in the oxygen-minimum zone results in an abundant supply of food for organisms immediately below it. The occupation of this area by species exploiting abundant food supplies may lead to strong vertical gradients in selective pressures for optimal rates of growth, modes of reproduction and development and in other aspects of species biology. The presence of such strong selective gradients may have led to an increase in habitat specialisation in the lower reaches of oxygen-minimum zones and an increased rate of speciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...