GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (2)
  • 2005-2009  (2)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q01006, doi:10.1029/2006GC001333.
    Description: Recent advances in underwater vehicle navigation and sonar technology now permit detailed mapping of complex seafloor bathymetry found at mid-ocean ridge crests. Imagenex 881 (675 kHz) scanning sonar data collected during low-altitude (~5 m) surveys conducted with DSV Alvin were used to produce submeter resolution bathymetric maps of five hydrothermal vent areas at the East Pacific Rise (EPR) Ridge2000 Integrated Study Site (9°50′N, “bull's-eye”). Data were collected during 29 dives in 2004 and 2005 and were merged through a grid rectification technique to create high-resolution (0.5 m grid) composite maps. These are the first submeter bathymetric maps generated with a scanning sonar mounted on Alvin. The composite maps can be used to quantify the dimensions of meter-scale volcanic and hydrothermal features within the EPR axial summit trough (AST) including hydrothermal vent structures, lava pillars, collapse areas, the trough walls, and primary volcanic fissures. Existing Autonomous Benthic Explorer (ABE) bathymetry data (675 kHz scanning sonar) collected at this site provide the broader geologic context necessary to interpret the meter-scale features resolved in the composite maps. The grid rectification technique we employed can be used to optimize vehicle time by permitting the creation of high-resolution bathymetry maps from data collected during multiple, coordinated, short-duration surveys after primary dive objectives are met. This method can also be used to colocate future near-bottom sonar data sets within the high-resolution composite maps, enabling quantification of bathymetric changes associated with active volcanic, hydrothermal and tectonic processes.
    Description: This work was supported by an NSF Ridge2000 fellowship to V.L.F. and a Woods Hole Oceanographic Institution fellowship supported by the W. Alan Clark Senior Scientist Chair (D.J.F.). Funding was also provided by the Censsis Engineering Research Center of the National Science Foundation under grant EEC-9986821. Support for field and laboratory studies was provided by the National Science Foundation under grants OCE-9819261 (D.J.F. and M.T.), OCE-0096468 (D.J.F. and T.S.), OCE-0328117 (SMC), OCE-0525863 (D.J.F. and S.A.S.), OCE-0112737 ATM-0427220 (L.L.W.), and OCE- 0327261 and OCE-0328117 (T.S.). Additional support was provided by The Edwin Link Foundation (J.C.K.).
    Keywords: High-resolution bathymetry ; Near-bottom sonar ; East Pacific Rise ; Ridge2000
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 5546372 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q03002, doi:10.1029/2005GC001094.
    Description: In the decade following documented volcanic activity on the East Pacific Rise near 9°50′N, we monitored hydrothermal vent fluid temperature variations in conjunction with approximately yearly vent fluid sampling to better understand the processes and physical conditions that govern the evolution of seafloor hydrothermal systems. The temperature of both diffuse flow (low-temperature) and focused flow (high-temperature) vent fluids decreased significantly within several years of eruptions in 1991 and 1992. After mid-1994, focused flow vents generally exhibited periods of relatively stable, slowly varying temperatures, with occasional high- and low-temperature excursions lasting days to weeks. One such positive temperature excursion was associated with a crustal cracking event. Another with both positive and negative excursions demonstrated a subsurface connection between adjacent focused flow and diffuse flow vents. Diffuse flow vents exhibit much greater temperature variability than adjacent higher-temperature vents. On timescales of a week or less, temperatures at a given position within a diffuse flow field often varied by 5°–10°C, synchronous with near-bottom currents dominated by tidal and inertial forcing. On timescales of a week and longer, diffuse flow temperatures varied slowly and incoherently among different vent fields. At diffuse flow vent sites, the conceptual model of a thermal boundary layer immediately above the seafloor explains many of the temporal and spatial temperature variations observed within a single vent field. The thermal boundary layer is a lens of warm water injected from beneath the seafloor that is mixed and distended by lateral near-bottom currents. The volume of the boundary layer is delineated by the position of mature communities of sessile (e.g., tubeworms) and relatively slow-moving organisms (e.g., mussels). Vertical flow rates of hydrothermal fluids exiting the seafloor at diffuse vents are less than lateral flow rates of near-bottom currents (5–10 cm/s). The presence of a subsurface, shallow reservoir of warm hydrothermal fluids can explain differing temperature behaviors of adjacent diffuse flow and focused flow vents at 9°50′N. Different average temperatures and daily temperature ranges are explained by variable amounts of mixing of hydrothermal fluids with ambient seawater through subsurface conduits that have varying lateral permeability.
    Description: Field and shore-based analyses have been supported by the National Science Foundation (OCE-0096468, OCE-8917311, OCE-9217026, OCE-9302205, OCE-0327261), the Woods Hole Oceanographic Institution's Vetlesen Fund and W. A. Clark Senior Scientist Chair (DJF), and the Devonshire Foundation (TMS).
    Keywords: Hydrothermal systems ; East Pacific Rise ; Vent fluids ; Seafloor eruptions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 2949653 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...