GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
Document type
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Geochemical Cycles 26 (2012): GB2035, doi:10.1029/2011GB004141.
    Description: The fractionation of silicon (Si) stable isotopes by biological activity in the surface ocean makes the stable isotope composition of silicon (δ30Si) dissolved in seawater a sensitive tracer of the oceanic biogeochemical Si cycle. We present a high-precision dataset that characterizes the δ30Si distribution in the deep Atlantic Ocean from Denmark Strait to Drake Passage, documenting strong meridional and smaller, but resolvable, vertical δ30Si gradients. We show that these gradients are related to the two sources of deep and bottom waters in the Atlantic Ocean: waters of North Atlantic and Nordic origin carry a high δ30Si signature of ≥+1.7‰ into the deep Atlantic, while Antarctic Bottom Water transports Si with a low δ30Si value of around +1.2‰. The deep Atlantic δ30Si distribution is thus governed by the quasi-conservative mixing of Si from these two isotopically distinct sources. This disparity in Si isotope composition between the North Atlantic and Southern Ocean is in marked contrast to the homogeneity of the stable nitrogen isotope composition of deep ocean nitrate (δ15N-NO3). We infer that the meridional δ30Si gradient derives from the transport of the high δ30Si signature of Southern Ocean intermediate/mode waters into the North Atlantic by the upper return path of the meridional overturning circulation (MOC). The basin-scale deep Atlantic δ30Si gradient thus owes its existence to the interaction of the physical circulation with biological nutrient uptake at high southern latitudes, which fractionates Si isotopes between the abyssal and intermediate/mode waters formed in the Southern Ocean.
    Description: This work was supported by Swiss National Science Foundation grants 200021-116473 and 200020-130361.
    Description: 2012-12-19
    Keywords: Atlantic Ocean ; Southern Ocean ; Silicon isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-28
    Description: The fractionation of silicon (Si) stable isotopes by biological activity in the surface ocean makes the stable isotope composition of silicon (δ30Si) dissolved in seawater a sensitive tracer of the oceanic biogeochemical Si cycle. We present a high-precision dataset that characterizes the δ30Si distribution in the deep Atlantic Ocean from Denmark Strait to Drake Passage, documenting strong meridional and smaller, but resolvable, vertical δ30Si gradients. We show that these gradients are related to the two sources of deep and bottom waters in the Atlantic Ocean: waters of North Atlantic and Nordic origin carry a high δ30Si signature of ≥+1.7‰ into the deep Atlantic, while Antarctic Bottom Water transports Si with a low δ30Si value of around +1.2‰. The deep Atlantic δ30Si distribution is thus governed by the quasi-conservative mixing of Si from these two isotopically distinct sources. This disparity in Si isotope composition between the North Atlantic and Southern Ocean is in marked contrast to the homogeneity of the stable nitrogen isotope composition of deep ocean nitrate (δ15N-NO3). We infer that the meridional δ30Si gradient derives from the transport of the high δ30Si signature of Southern Ocean intermediate/mode waters into the North Atlantic by the upper return path of the meridional overturning circulation (MOC). The basin-scale deep Atlantic δ30Si gradient thus owes its existence to the interaction of the physical circulation with biological nutrient uptake at high southern latitudes, which fractionates Si isotopes between the abyssal and intermediate/mode waters formed in the Southern Ocean. Key Points: - Deep Atlantic Ocean displays gradient in Si isotopic composition of silicic acid - The gradient is caused by quasi-conservative mixing of Si from NADW and AABW - Contrasting isotope signature of NADW and AABW due to interaction of biology and MOC
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: We present the first systematic study of the silicon isotope composition in the water column (δ30SiSi(OH)4) and in diatoms (δ30Sidiatom) from the underlying surface sediments in a coastal upwelling region. The surface waters upwelling on the shelf off Peru are mainly fed by southward flowing subsurface waters along the coast, which show a mean δ30SiSi(OH)4 of +1.5‰. The concentration of dissolved silicic acid (Si(OH)4) increases towards the south in these waters and with increasing water depth, suggesting lateral mixing with water masses from the south and intense remineralisation of particulate biogenic silica (bSiO2) in the water column and in the surface sediments. Surface waters in the realm of the most intense upwelling between 5°S and 15°S have only marginally elevated δ30SiSi(OH)4 values (δ30SiSi(OH)4 = +1.7‰) with respect to the source Si isotope composition, whereas further north and south, where upwelling is less pronounced, surface waters are more strongly fractionated (δ30SiSi(OH)4 up to +2.8‰) due to the stronger utilisation of the smaller amounts of available Si(OH)4. The degree of Si(OH)4 utilisation in the surface waters along the shelf estimated from the Si(OH)4 concentration data ranges from 51% to 93%. The δ30Sidiatom values of hand-picked diatoms in the underlying surface sediments vary from +0.6‰ to +2.0‰, which is within the range of the expected fractionation between surface waters and diatoms. The fractionation signal in the surface waters produced during formation of the diatoms is reflected by the δ30Sidiatom values in the underlying sediments, with the lowest δ30Sidiatom values in the main upwelling region. The silicon isotope compositions of bSiO2 (δ30SibSiO2) from the same surface sediment samples are generally much lower than the δ30Sidiatom signatures indicating a significant contamination of the bSiO2 with biogenic siliceous material other than diatoms, such as sponge spicules. This shift towards lighter δ30SibSiO2 values by up to −1.3‰ compared to δ30Sidiatom signatures for the same surface sediment samples potentially biases the interpretation of δ30Si paleorecords from sediments with low bSiO2 concentrations, and thus the reconstruction of past Si(OH)4 utilisation in surface waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...