GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-24
    Description: Explosions of hot water, steam, and gas are common periodic events of subaerial geothermal systems. These highly destructive events may cause loss of life and substantial damage to infrastructure, especially in densely populated areas and where geothermal systems are actively exploited for energy. We report on the occurrence of a large number of explosion craters associated with the offshore venting of gas and thermal waters at the volcanic island of Panarea, Italy, demonstrating that violent explosions similar to those observed on land also are common in the shallow submarine environment. With diameters ranging from 5 to over 100 m, the observed circular seafloor depressions record a history of major gas explosions caused by frequent perturbation of the submarine geothermal system over the past 10,000 years. Estimates of the total gas flux indicate that the Panarea geothermal system released over 70 Mt of CO2 over this period of time, suggesting that CO2 venting at submerged arc volcanoes contributes significantly to the global atmospheric budget of this greenhouse gas. The findings at Panarea highlight that shallow submarine gas explosions represent a previously unrecognized volcanic hazard around populated volcanic islands that needs to be taken into account in the development of risk management strategies.
    Description: Published
    Description: 1937-1944
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Gas explosions . ; Geothermal systems ; Submarine gas venting ; Volcanic CO2 flux ; Volcanic hazards ; Panarea island ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The results of three decades of seafloor research provide the most reliable information on the importance of water depth in massive sulfide formation. Available data from over 130 occurrences show that water depths of seafloor vent sites vary with plate tectonic setting and the regional magmatic and volcanic environment. The shallowest hydrothermal systems in subduction-related settings are hosted by arc volcanoes. These shallow vent sites have a number of features in common with subaerial epithermal systems. Massive sulfide occurrences in arc-related rifts, the most likely setting for many ancient analogs, are generally restricted to water depths from ~700 to 2,000 m, with rifts developing within old arc crust at the deeper end of this range. Back-arc spreading centers proximal to arcs host massive sulfide deposits at depths of ~1,500 to 2,000 m. The deepest hydrothermal systems occur along mature back-arc spreading centers distal to volcanic arcs where water depths range from ~2,000 to 3,700 m. These deeper vent sites probably represent the best modern analogues of ophiolite-hosted massive sulfide deposits. Boiling of the hydrothermal fluids is common at volcanic arcs and in arc-related rifts. In these environments, elevated magmatic gas contents of the hydrothermal fluids can contribute to the widespread occurrence of phase separation and associated gas loss. By contrast, the high ambient pressures in deep marine hydrothermal systems along mature back-arc spreading centers prevent fluids from boiling during their ascent to the seafloor. Boiling controls the maximum temperature at which hydrothermal fluids discharge at the seafloor and, therefore, influences the metal content of seafloor sulfide deposits. Copper-rich massive sulfides typically occur at water depths exceeding ~1,000 m, whereas Zn- and Pb-rich occurrences may form at any water depth. Boiling can be an important control on Ag and Au grades but is not the only factor controlling precious metal enrichment in massive sulfides. Shallow marine hot spring deposits can be highly enriched in trace metals such as As, Hg, and Sb. Submarine volcanic arc and back-arc settings are geologically complex and significant variations in water depth can occur over short distances. Paleoenvironmental reconstruction of these environments in ancient volcanic terranes is hampered by the lack of unequivocal volcanological or sedimentological criteria that indicate water depth. The relationships established here using modern seafloor observations provide important constraints on the paleoenvironmental setting of ancient volcanic-hosted massive sulfide deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-30
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-30
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GSA, Geological Society of America
    In:  Geology, 39 (12). pp. 1155-1158.
    Publication Date: 2017-05-18
    Description: The possibility of mining seafl oor massive sulfide deposits has stirred debate about the sustainable use of this new resource and whether commercial development is worth the risk. Among the outstanding questions is how many deposits might be accessible to deep-sea mining. More than 300 sites of high-temperature hydrothermal venting have been identifi ed since the discovery of black smokers, but signifi cant massive sulfide accumulation has been found at only 165 of these sites. Estimates of the total number of vent fields and associated mineral deposits, based on plume studies and deposit occurrence models, range from 500 to 5000. We have used new deposit occurrence data from 10,000 km of ridge, arc, and backarc spreading centers to estimate the amount of massive sulfide in the easily accessible neovolcanic zones of the global oceans. The total accumulation in these areas is estimated to be on the order of 6 × 108 tonnes, containing ~3 × 107 tonnes of copper and zinc. This is similar to the total discovered copper and zinc in Cenozoic massive sulfi de deposits mined on land but is insuffi cient to satisfy a growing global demand for these metals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-31
    Description: The results of three decades of seafloor research provide the most reliable information on the importance of water depth in massive sulfide formation. Available data from over 130 occurrences show that water depths of seafloor vent sites vary with plate tectonic setting and the regional magmatic and volcanic environment. The shallowest hydrothermal systems in subduction-related settings are hosted by arc volcanoes. These shallow vent sites have a number of features in common with subaerial epithermal systems. Massive sulfide occurrences in arc-related rifts, the most likely setting for many ancient analogs, are generally restricted to water depths from ~700 to 2,000 m, with rifts developing within old arc crust at the deeper end of this range. Back-arc spreading centers proximal to arcs host massive sulfide deposits at depths of ~1,500 to 2,000 m. The deepest hydrothermal systems occur along mature back-arc spreading centers distal to volcanic arcs where water depths range from ~2,000 to 3,700 m. These deeper vent sites probably represent the best modern analogues of ophiolite-hosted massive sulfide deposits. Boiling of the hydrothermal fluids is common at volcanic arcs and in arc-related rifts. In these environments, elevated magmatic gas contents of the hydrothermal fluids can contribute to the widespread occurrence of phase separation and associated gas loss. By contrast, the high ambient pressures in deep marine hydrothermal systems along mature back-arc spreading centers prevent fluids from boiling during their ascent to the seafloor. Boiling controls the maximum temperature at which hydrothermal fluids discharge at the seafloor and, therefore, influences the metal content of seafloor sulfide deposits. Copper-rich massive sulfides typically occur at water depths exceeding ~1,000 m, whereas Zn- and Pb-rich occurrences may form at any water depth. Boiling can be an important control on Ag and Au grades but is not the only factor controlling precious metal enrichment in massive sulfides. Shallow marine hot spring deposits can be highly enriched in trace metals such as As, Hg, and Sb. Submarine volcanic arc and back-arc settings are geologically complex and significant variations in water depth can occur over short distances. Paleoenvironmental reconstruction of these environments in ancient volcanic terranes is hampered by the lack of unequivocal volcanological or sedimentological criteria that indicate water depth. The relationships established here using modern seafloor observations provide important constraints on the paleoenvironmental setting of ancient volcanic-hosted massive sulfide deposits.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-31
    Description: A subseafloor replacement-style barite and sulfide occurrence was drilled in shallow waters at the Palinuro volcanic complex, the northernmost Aeolian arc volcano in the Tyrrhenian Sea, Italy. Using a lander-type drilling device, 11 successful drill holes yielded a total of 13.5 m of core from a sediment-filled depression located at a water depth of 630 to 650 m. The longest continuous drill core recovered consists of 4.84 m of massive to semimassive barite and sulfides with abundant late, native sulfur overprint. Seafloor observations suggest that the hydrothermal system associated with the formation of the subseafloor barite and sulfide ore zone is still active, although black smoker activity does not occur on the seafloor. The recovered drill core shows that the subseafloor deposit is zoned with depth. The top of the mineralized zone is comprised of a variably silicified vuggy barite-sulfide facies that shows notable polymetallic metal enrichment, while the deeper portion of the mineralized zone is dominated by massive pyrite having distinctly lower base and precious metal grades. Metal zonation of the barite and sulfide deposit is related to the evolution of the hydrothermal fluids in space and time. The barite cap and the massive pyrite present in the deeper portion of the mineralized zone appear to have formed early in the paragenesis. During the main stage of the mineralization, the barite cap was brecciated and cemented by a polymetallic assemblage of barite and pyrite with minor chalcopyrite and tetrahedrite, trace famatinite, and rare cinnabar. Lower temperature precipitates formed during the main stage of mineralization include sphalerite, galena, pyrite, opal-A, and barite, which are associated with traces of Pb-Sb-As sulfosalts such as bournonite-seligmannite, or semseyite. A distinct mineral assemblage of fine-grained anhedral enargite, hypogene covellite, chalcopyrite, and galena is commonly associated with colloform sphalerite, galena, and pyrite as a late phase of this main stage. Colloform pyrite and marcasite are the last sulfides formed in the paragenetic sequence. The deposit is interpreted to have formed from fluids having an intermediate-sulfidation state, although excursions to high- and very high sulfidation states are indicated by the presence of abundant enargite and hypogene covellite. Laser ablation and conventional sulfur isotope analyses show that pyrite formed close to the seafloor within the zone of polymetallic metal enrichment has a variable sulfur isotope composition ( 34 S = –39 to +3), whereas a more narrow range is observed in the massive pyrite at depth ( 34 S = –10 to 0). Similar variations were also documented for the late native sulfur overprint. Overall, the negative sulfur isotope ratios at depth, the intermediate- to very high sulfidation conditions during mineralization, and the abundance of native sulfur suggest contributions of magmatic volatiles to the mineralizing fluids from a degassing magma chamber at depth. Biological processes are interpreted to have played a major role during late stages of ore formation. The combination of a subseafloor replacement deposit with a massive to semimassive barite cap rock overlying massive pyrite, the intermediate- to high-sulfidation characteristics, and the strong biological influence on the late stages of mineralization are distinct from other modern seafloor massive sulfide deposits and represents a style of submarine mineralization not previously recognized in a modern volcanic arc environment. The barite and sulfide occurrence at Palinuro shares many characteristics with porphyry-related base metal veins and intermediate-sulfidation epithermal deposits, suggesting that metallogenic processes associated with arc-related magmatic-hydrothermal systems are not restricted to the subaerial environment.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-11-21
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-21
    Description: The 2704 to 2695 Ma Blake River Group in the southern Abitibi greenstone belt comprises a well preserved submarine volcanic sequence that hosts a large number of VMS and important Au-rich VMS deposits, including the world-class Horne and LaRonde-Penna deposits. Establishing precise chronostratigraphic control on the VMS deposits within the Blake River Group is critical because numerous distinct events took place within a period of 9 m.y. Nineteen new high-precision U-Pb ages temporally constrain the host rocks of many poly-metallic VMS deposits and associated synvolcanic intrusions, demonstrating that these VMS deposits formed throughout the protracted volcanic evolution of the entire group. Ages on host rocks of the Horne (2702.2 ± 0.9 Ma), Quemont (2702.0 ± 0.8 Ma), and Fabie (2701.9 ± 0.9 Ma) deposits reveal that they are among the oldest VMS deposits in the Blake River Group. The giant Horne Au-rich VMS deposit had already formed when the Cu-Zn deposits of the Noranda mine sequence, including Millenbach and Amulet, were generated at ~2698 Ma and is thus unrelated, consistent with its different volcanological setting and metal content. Large Au-rich VMS deposits of the Bousquet Formation, including LaRonde Penna and Bousquet 2-Dumagami, were formed at 2698 to 2697 Ma and are distinctly younger than the Horne and Quemont deposits. There were, therefore, two major time-stratigraphic intervals within the Blake River Group that were favorable for the formation of Au-rich VMS deposits. Rhyolite hosting the large Bouchard-Hébert VMS deposits yielded an age of 2695.8 ± 0.8 Ma. Important mineralizing events in the Blake River Group occur at ca. 2-m.y. intervals apart and are associated with major magmatic episodes. Recognition of specific time-stratigraphic intervals for different styles of mineralization and geologic settings is essential to improve exploration models within the Blake River Group and for similar volcanic assemblages elsewhere in the Archean.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-16
    Description: In eukaryotes, the nucleocytoplasmic transport of macromolecules is mainly mediated by soluble nuclear transport receptors of the karyopherin-β superfamily termed importins and exportins. The highly versatile exportin chromosome region maintenance 1 (CRM1) is essential for nuclear depletion of numerous structurally and functionally unrelated protein and ribonucleoprotein cargoes. CRM1 has been...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...