GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (70)
Document type
Keywords
Language
Years
Year
  • 1
    In: Limnology and oceanography, Oxford [u.a.] : Wiley-Blackwell, 1956, 55(2010), 2, Seite 950-964, 1939-5590
    In: volume:55
    In: year:2010
    In: number:2
    In: pages:950-964
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1939-5590
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Environmental science & technology, Columbus, Ohio : American Chemical Society, 1967, 44(2010), 7, Seite 24192425, 1520-5851
    In: volume:44
    In: year:2010
    In: number:7
    In: pages:24192425
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1520-5851
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of geophysical research. C, Oceans, Hoboken, NJ : Wiley, 1978, 115(2010), 2169-9291
    In: volume:115
    In: year:2010
    In: extent:18
    Description / Table of Contents: Bubble transport of methane from shallow seep sites in the Black Sea west of the Crimea Peninsula between 70 and 112 m water depth has been studied by extrapolation of results gained through different hydroacoustic methods and direct sampling. Ship-based hydroacoustic echo sounders can locate bubble releasing seep sites very precisely and facilitate their correlation with geological or other features at the seafloor. Here, the backscatter strength of a multibeam system was integrated with single-beam data to estimate the amount of seeps/m2 for different backscatter intensities, resulting in 2709 vents in total. Direct flux measurements by submersible revealed methane fluxes from individual vents of 0.32-0.85 l/min or 14.5-37.8 mmol/min at ambient pressure and temperature conditions. A conservative estimate of 30 mmol/min per site was used to estimate the flux into the water to be 1219-1355 mmol/s. The flux to the atmosphere was calculated by applying a bubble dissolution model taking release depth, temperature, gas composition, and bubble size spectra into account. The flux into the atmosphere (3930-4533 mol/d) or into the mixed layer (6186-6899 mol/d) from the 21.8 km2 large study area is three times higher than independently measured fluxes of dissolved methane for the same area using geochemical methods (1030-2495 mol/d). The amount of methane dissolving in the mixed layer is 2256-2366 mol/d. This close match shows that the hydroacoustic approach for extrapolating the number of seeps/m2 and the applied bubble dissolution model are suitable to extrapolate methane fluxes over larger areas.
    Type of Medium: Online Resource
    Pages: 18 , Ill., graph. Darst
    ISSN: 2169-9291
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 272(2010), Seite 170-188, 1872-6151
    In: volume:272
    In: year:2010
    In: pages:170-188
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of geophysical research. G, Biogeosciences, [Washington, DC] : [Verlag nicht ermittelbar], 2006, 115(2010), 2169-8961
    In: volume:115
    In: year:2010
    In: extent:9
    Description / Table of Contents: We determined methane (CH4) emissions in a field enclosure experiment in a littoral freshwater marsh under the influence of experimentally simulated warming and enhanced nitrogen deposition. Methane emissions by ebullition from the marsh composed of Phragmites australis were measured with funnel traps deployed in a series of enclosures for two 3 week periods. Diffusive fluxes were estimated on the basis of measured CH4 concentrations and application of Fick's law. Neither diffusive nor ebullitive fluxes of methane were significantly affected by warming or nitrate enrichment, possibly because variability both within and among replicate experimental enclosures was high. Average emission rates resulted primarily from ebullition (0.2-30.3 mmol CH4 m-2 d-1), which were 4 orders of magnitude higher than estimated diffusive fluxes and were of similar importance as the coarsely estimated advective methane transport through plants. Significant correlations between dissolved oxygen and dissolved methane and ebullition flux suggest that methane release from the sediment might feed back positively on methane production by reducing dissolved oxygen in the water column and oxygen flux into the sediment. Nitrate may have a similar effect. Extrapolation of our limited data indicates that total methane fluxes from vegetated littoral zones of temperate lakes may contribute 0.5%-7% of the global natural CH4 emissions. These results emphasize the importance of freshwater marshes as sources of methane emissions to the atmosphere, even when they occupy only relatively small littoral areas. More detailed investigations are clearly needed to assess whether global warming and nitrogen deposition can have climate feedbacks by altering methane fluxes from these wetlands.
    Type of Medium: Online Resource
    Pages: 9 , Ill., graph. Darst
    ISSN: 2169-8961
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 272(2010), Seite 170-188, 1872-6151
    In: volume:272
    In: year:2010
    In: pages:170-188
    Description / Table of Contents: In situ methane emission measurements from sediments are combined with water column backscatter anomalies recorded with an Acoustic Doppler Current Profiler (ADCP) integrated on a benthic observatory. During cruise SO191 to the Hikurangi Margin (New Zealand), the Fluid Flux Observatory (FLUFO) was deployed at a cold seep site at Omakere Ridge. The sediments incubated in the two benthic chambers of FLUFO contained seep-associated fauna, including small and larger tubeworms, juvenile bivalves of the genus Acharax and some juvenile clams. The first 26 h of in situ incubation revealed low to moderate methane fluxes of 0.01 to 0.4 mmol m- 2 d- 1 into the overlying water of the backup and flux chamber, respectively. In the following sampling sequence, however, the methane concentration in the flux chamber reached 3-fold higher concentrations whereas the methane concentration in the backup chamber remained low and unchanged. Simultaneous to the sudden methane increase, a significant backscatter anomaly was recorded and persisted for 30 min and covered the entire depth range (100 m) of the upward looking ADCP. Data analyses revealed that a single-phase plume (no bubbles) outburst likely occurred during this time. While bubbles appeared to be present during some periods, plume simulations revealed that the volume of gas required (rate of 8 ton/day) does not support a bubble plume. A second data set was obtained during lander deployments at Rock Garden where visual observations by ROV confirmed the transient pattern of free gas injection into the water column. Acoustic flares and methane concentration increase in the bottom water hint towards a pressure (tidal) induced discharge mechanism. The presented data demonstrate the temporal and spatial variability of seabed methane emission, and very short methane signal lifetime in the water column (hours to a few days) due to turbulent diffusion. Both have to be considered when methane budgets are extrapolated from single methane emission rates.
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-06-18
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Continental Shelf Research, PERGAMON-ELSEVIER SCIENCE LTD, 72, pp. 107- 118, ISSN: 0278-4343
    Publication Date: 2017-01-09
    Description: Abstract In the Arctic Seas, the West Spitsbergen continental margin represents a prominent methane seep area. In this area, free gas formation and gas ebullition as a consequence of hydrate dissociation due to global warming are currently under debate. Recent studies revealed shallow gas accumulation and ebullition of methane into the water column at more than 250 sites in an area of 665 km2. We conducted a detailed study of a subregion of this area, which covers an active gas ebullition area of 175 km2 characterized by 10 gas flares reaching from the seafloor at~245 m up to 50 m water depth to identify the fate of the released gas due to dissolution of methane from gas bubbles and subsequent mixing, transport and microbial oxidation. The oceanographic data indicated a salinity-controlled pycnocline situated ~20 m above the seafloor. A high resolution sampling program at the pycnocline at the active gas ebullition flare area revealed that the methane concentration gradient is strongly controlled by the pycnocline. While high methane concentrations of up to 524 nmol L−1 were measured below the pycnocline, low methane concentrations of less than 20 nmol L−1 were observed in the water column above. Variations in the δ 13 C CH 4 values point to a 13C depleted methane source (~−60‰ VPDB) being mainly mixed with a background values of the ambient water (~−37.5‰ VPDB). A gas bubble dissolution model indicates that ~80% of the methane released from gas bubbles into the ambient water takes place below the pycnocline. This dissolved methane will be laterally transported with the current northwards and most likely microbially oxidized in between 50 and 100 days, since microbial CH4 oxidation rates of 0.78 nmol d−1 were measured. Above the pycnocline, methane concentrations decrease to local background concentration of ~10 nmol L−1. Our results suggest that the methane dissolved from gas bubbles is efficiently trapped below the pycnocline and thus limits the methane concentration in surface water and the air–sea exchange during summer stratification. During winter the lateral stratification breaks down and fractions of the bottom water enriched in methane may be vertically mixed and thus be potentially an additional source for atmospheric methane.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-12-06
    Keywords: Center for Marine Environmental Sciences; EXP; Experiment; Flow velocity, water; Flume_Eddy_2013_EXP_15op; MARUM; Oxygen; Oxygen optode (PyroScience GmbH, Germany); Particle image velocimetry (PIV)
    Type: Dataset
    Format: text/tab-separated-values, 8880 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-06
    Keywords: Center for Marine Environmental Sciences; EXP; Experiment; Flow velocity, water; Flume_Eddy_2013_EXP_14op; MARUM; Oxygen; Oxygen optode (PyroScience GmbH, Germany); Particle image velocimetry (PIV)
    Type: Dataset
    Format: text/tab-separated-values, 8880 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...