GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (50)
Document type
Keywords
Language
Years
Year
  • 1
    Keywords: Forschungsbericht ; Sedimentanalyse
    Type of Medium: Online Resource
    Pages: Online-Ressource (26 S., 15,4 MB) , graph. Darst., Kt.
    Language: German
    Note: Förderkennzeichen BMBF 03G0217A , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: We integrate micropaleontological and geochemical records (benthic stable isotopes, neodymium isotopes, benthic foraminiferal abundances and XRF-scanner derived elemental data) from well-dated Pacific Ocean successions (15–12.7 Ma) to monitor circulation changes during the middle Miocene transition into a colder climate mode with permanent Antarctic ice cover. Together with previously published records, our results show improvement in deep water ventilation and strengthening of the meridional overturning circulation following major ice expansion at ∼13.9 Ma. Neodymium isotope data reveal, however, that the provenance of intermediate and deep water masses did not change markedly between 15 and 12.7 Ma. We attribute the increased δ13C gradient between Pacific deep and intermediate water masses between ∼13.6 and 12.7 Ma to more vigorous entrainment of Pacific Central Water into the wind-driven ocean circulation due to enhanced production of intermediate and deep waters in the Southern Ocean. Prominent 100 kyr ventilation cycles after 13.9 Ma reveal that the deep Pacific remained poorly ventilated during warmer intervals at high eccentricity, whereas colder periods (low eccentricity) were characterized by a more vigorous meridional overturning circulation with enhanced carbonate preservation. The long-term δ13C decline in Pacific intermediate and deep water sites between 13.5 and 12.7 Ma reflects a global trend, probably related to a re-adjustment response of the global carbon cycle following the last 400 kyr carbon maximum (CM6) of the “Monterey Excursion”.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: New drill cores from the Lower Aptian historical stratotype at Roquefort-La Bédoule (SE France) provide continuous high-resolution geochemical and isotope records which closely track the onset of OAE 1a in a subtropical intra-shelf basin (South Provençal Basin). The drilling operation recovered a total of 180 m of undisturbed sediments in three holes. The lowermost 67 m correspond to the Bedoulian (core LB1) and are here analyzed in high-resolution using geochemical proxies (stable carbon isotopes, stable oxygen isotopes, and carbonate content) and foraminiferal biostratigraphy. Pervasive bioturbation through core LB1 suggests mostly oxygenated bottom water conditions with transient dysoxic episodes, as shown by higher pyrite and glauconite concentrations within the marlstones. Unprecedented resolution over the negative δ13C excursion preceding OAE 1a (segment C3) reveals a characteristic double trough extending over ∼5.5 m in core LB1. This long-lasting negative excursion was possibly linked to multiple pulses of enhanced CO2 release to the atmosphere. Estimated sedimentation rates of 1.6–2 cm/kyr indicate that the negative δ13C excursion lasted 〉200 kyr, while the main positive carbon isotope shift (segment C4) had a duration of 〉300 kyr. Fluctuations in δ18O suggest transient episodes of climate warming and cooling at the northern margin of the Tethys or even on a more global scale prior to the onset of OAE 1a.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-05-31
    Description: We present trace element compositions, rare earth elements (REEs) and radiogenic Nd–Sr isotope analyses of Cretaceous to recent sediments of the Tarfaya basin, SW Morocco, in order to identify tectonic setting, source rocks composition and sediments provenance. The results suggest that the sediments originate from heterogeneous source areas of the Reguibat Shield and the Mauritanides (West African Craton), as well as the western Anti-Atlas, which probably form the basement in this area. For interpreting the analyzed trace element results, we assume that elemental ratios such as La/Sc, Th/Sc, Cr/Th, Th/Co, La/Co and Eu/Eu∗ in the detrital silicate fraction of the sedimentary rocks behaved as a closed system during transport and cementation, which is justified by the consistency of all obtained results. The La/Y-Sc/Cr binary and La–Th–Sc ternary relationships suggest that the Tarfaya basin sediments were deposited in a passive margin setting. The trace element ratios of La/Sc, Th/Sc, Cr/Th and Th/Co indicate a felsic source. Moreover, chondrite-normalized REE patterns with light rare earth elements (LREE) enrichment, a flat heavy rare earth elements (HREE) and negative Eu anomalies can also be attributed to a felsic source for the Tarfaya basin sediments. The Nd isotope model ages (TDM = 2.0–2.2 Ga) of the Early Cretaceous sediments suggest that sediments were derived from the Eburnean terrain (Reguibat Shield). On the other hand, Late Cretaceous to Miocene–-Pliocene sediments show younger model ages (TDM = 1.8 Ga, on average) indicating an origin from both the Reguibat Shield and the western Anti-Atlas. In contrast, the southernmost studied Sebkha Aridal section (Oligocene to Miocene–Pliocene) yields older provenance ages (TDM = 2.5–2.6 Ga) indicating that these sediments were dominantly derived from the Archean terrain of the Reguibat Shield.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  [Talk] In: Ocean Sciences Meeting 2014, 23.-28.02.2014, Honululu, Hawaii, USA .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus Ges.
    In:  [Poster] In: EGU General Assembly, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts ; EGU2010-9334 .
    Publication Date: 2019-09-23
    Description: Until recently it was assumed that the major modern ice sheets on Antarctica became established around the Eocene-Oligocene boundary about 34 Ma ago. But new evidence (e.g. Miller et al., 2008) indicates that continental ice may have been present much earlier, some of it probably even since the greenhouse times of the Late Cretaceous. Deep sea drilling data suggest changes in sea-level during the Late Cretaceous that could have been caused by the melting and freezing of vast ice sheets on Antarctica. Using a GCM approach to test the whether it would be possible to generate the described high-amplitude sealevel falls is one additional way to test this vigorously discussed issue. As shown above, our numerical approach indicates the possibility of a substantial Antarctic glaciation by changing the physical boundary conditions, eccentricity, pCO2, and elevation within reasonable Late Cretaceous ranges. Our simulations suggest that simulated snowfall and consecutive ice formation on Antarctica might yield sufficient volumes to account for the documented rapid, low-amplitude Cretaceous sea-level fluctuations. Based on cautious assumptions and possible errors the model results show that ice build-up could take place in realistic time spans and in accordance with the proxy records. Thus, the possibility of an Antarctic ice shield build-up large enough to drive sea level fluctuations on the order of tens of meters within 20,000-220,000 years is supported. The initial snow accumulation and following growth of Antarctic ice-sheets in the Cretaceous can be attributed to changes in southern hemisphere summer insolation due to reduced orbital eccentricity. Alternatively and/or additionally, declining atmospheric CO2 values caused further cooling
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: ABSTRACT FINAL ID: PP11A-1769 Cretaceous anoxic events may have been triggered by massive volcanic CO2 degassing as large igneous provinces (LIPs) were emplaced on the seafloor. Here, we present a comprehensive modeling study to decipher the marine biogeochemical consequences of enhanced volcanic CO2 emissions. A biogeochemical box model has been developed for transient model runs with time-dependent volcanic CO2 forcing. The box model considers continental weathering processes, marine export production, degradation processes in the water column, the rain of particles to the seafloor, benthic fluxes of dissolved species across the seabed, and burial of particulates in marine sediments. The ocean is represented by twenty-seven boxes. To estimate horizontal and vertical fluxes between boxes, a coupled ocean–atmosphere general circulation model (AOGCM) is run to derive the circulation patterns of the global ocean under Late Cretaceous boundary conditions. The AOGCM modeling predicts a strong thermohaline circulation and intense ventilation in the Late Cretaceous oceans under high pCO2 values. With an appropriate choice of parameter values such as the continental input of phosphorus, the model produces ocean anoxia at low to mid latitudes and changes in marine δ13C that are consistent with geological data such as the well established δ13C curve. The spread of anoxia is supported by an increase in riverine phosphorus fluxes under high pCO2 and a decrease in phosphorus burial efficiency in marine sediments under low oxygen conditions in ambient bottom waters. Here, we suggest that an additional mechanism might contribute to anoxia, an increase in the C:P ratio of marine plankton which is induced by high pCO2 values. According to our AOGCM model results, an intensively ventilated Cretaceous ocean turns anoxic only if the C:P ratio of marine organic particles exported into the deep ocean is allowed to increase under high pCO2 conditions. Being aware of the uncertainties such as diagenesis, this modeling study implies that potential changes in Redfield ratios might be a strong feedback mechanism to attain ocean anoxia via enhanced CO2 emissions. The formation of C-enriched marine organic matter may also explain the frequent occurrence of global anoxia during other geological periods characterized by high pCO2 values.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    IODP Office
    In:  Scientific Drilling (9). pp. 20-22.
    Publication Date: 2019-09-23
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 307 (3-4). pp. 279-288.
    Publication Date: 2019-09-23
    Description: The question whether large scale glaciations on Antarctica were possible in a late Mesozoic greenhouse climate such as the Late Cretaceous is an intriguing one. The most recent years have provided an increasing number of studies investigating the growth and decay of paleo-continental ice sheets on Antarctica possibly large enough to affect sea level. Since the outcome of these studies doesn't provide a basis for a conclusive decision we have performed a number of model runs using an Atmospheric General Circulation Model (AGCM) to test whether large volumes of snow might have accumulated even under Late Cretaceous greenhouse conditions. By varying orbital parameters as well as topography, and atmospheric CO2 concentrations our models indicate the possibility of an Antarctic ice shield build-up large enough to drive sea level fluctuations on the order of tens of meters within ~ 20,000 years. This is supported under the assumption of pCO2 levels 〈 800 ppm, low insolation, and elevated topography. The growth of a major Antarctic ice sheet would be possible on reasonable time scales. To accumulate about half the present day snow/ice volume which is required to explain the documented shifts in oxygen isotopes our model results suggest a time span between 20,000 and 80,000 years for these ice volumes to accumulate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...