GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 94 (2013): 1131–1144, doi:10.1175/BAMS-D-12-00100.1.
    Description: The recent retreat and speedup of outlet glaciers, as well as enhanced surface melting around the ice sheet margin, have increased Greenland's contribution to sea level rise to 0.6 ± 0.1 mm yr−1 and its discharge of freshwater into the North Atlantic. The widespread, near-synchronous glacier retreat, and its coincidence with a period of oceanic and atmospheric warming, suggests a common climate driver. Evidence points to the marine margins of these glaciers as the region from which changes propagated inland. Yet, the forcings and mechanisms behind these dynamic responses are poorly understood and are either missing or crudely parameterized in climate and ice sheet models. Resulting projected sea level rise contributions from Greenland by 2100 remain highly uncertain. This paper summarizes the current state of knowledge and highlights key physical aspects of Greenland's coupled ice sheet–ocean–atmosphere system. Three research thrusts are identified to yield fundamental insights into ice sheet, ocean, sea ice, and atmosphere interactions, their role in Earth's climate system, and probable trajectories of future changes: 1) focused process studies addressing critical glacier, ocean, atmosphere, and coupled dynamics; 2) sustained observations at key sites; and 3) inclusion of relevant dynamics in Earth system models. Understanding the dynamic response of Greenland's glaciers to climate forcing constitutes both a scientific and technological frontier, given the challenges of obtaining the appropriate measurements from the glaciers' marine termini and the complexity of the dynamics involved, including the coupling of the ocean, atmosphere, glacier, and sea ice systems. Interdisciplinary and international cooperation are crucial to making progress on this novel and complex problem.
    Description: 2014-02-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 657-670, doi:10.1175/2008BAMS2667.1.
    Description: Oceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model developers with those conducting observational, numerical, and laboratory process studies of overflows. Here, the organization of the Climate Process Team is described, and a few of the successes and lessons learned during this collaboration are highlighted, with some emphasis on the well-observed Mediterranean overflow. The Climate Process Team has developed several different overflow parameterizations, which are examined in a hierarchy of ocean models, from comparatively well-resolved regional models to the largest-scale global climate models.
    Description: The Gravity Current Entrainment Climate Process Team was funded by NSF grants OCE-0336850 and OCE-0611572 and NOAA as a contribution to U.S.CLIVAR.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 602–615, doi:10.1175/JPO-D-12-055.1.
    Description: The ocean interior stratification and meridional overturning circulation are largely sustained by diapycnal mixing. The breaking of internal tides is a major source of diapycnal mixing. Many recent climate models parameterize internal-tide breaking using the scheme of St. Laurent et al. While this parameterization dynamically accounts for internal-tide generation, the vertical distribution of the resultant mixing is ad hoc, prescribing energy dissipation to decay exponentially above the ocean bottom with a fixed-length scale. Recently, Polzin formulated a dynamically based parameterization, in which the vertical profile of dissipation decays algebraically with a varying decay scale, accounting for variable stratification using Wentzel–Kramers–Brillouin (WKB) stretching. This study compares two simulations using the St. Laurent and Polzin formulations in the Climate Model, version 2G (CM2G), ocean–ice–atmosphere coupled model, with the same formulation for internal-tide energy input. Focusing mainly on the Pacific Ocean, where the deep low-frequency variability is relatively small, the authors show that the ocean state shows modest but robust and significant sensitivity to the vertical profile of internal-tide-driven mixing. Therefore, not only the energy input to the internal tides matters, but also where in the vertical it is dissipated.
    Description: This work is a component of the Internal- Wave Driven Mixing Climate Process Team funded by the National Science Foundation Grant OCE-0968721 and the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Award NA08OAR4320752.
    Description: 2013-09-01
    Keywords: Diapycnal mixing ; Internal waves ; Subgrid-scale processes ; Ocean models ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...