GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: It is unclear whether transport by human vectors can increase the robustness of translocated populations and thereby enhance their invasiveness. To test this concept, we investigated the effect of heat stress on the tolerance of mussel populations towards a second stress event of the same kind. The heat challenges we mimicked can be faced by marine invertebrates that are transported through regions with high sea surface temperatures on ship hulls or in ballast water tanks. The study included 5 mussel species that were collected at sites in Brazil, Chile, Finland, Germany (Baltic Sea) and Portugal. In parallel laboratory experiments, monospecific groups of individuals were exposed to heat challenges that caused 60–83% mortality in the experimental groups within 15–28 days. The surviving individuals were exposed to a second stress event of the same kind, while their survival was then compared to the robustness of conspecifics that had not been exposed to elevated temperatures before. We observed that thermal tolerance was significantly enhanced by previous heat stress experience in case of Semimytilus algosus from Chile and in case of Mytilus edulis from Germany. Our results suggest that heat challenges, which marine invertebrates experience during transport, can enhance stress tolerance in founder populations of these species in their non-native range by potentially increasing the frequency of genetically adapted genotypes. This points at the necessity to learn more about selection acting on organisms during human-mediated transport—in the aquatic but also in the terrestrial environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte-free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluctuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: image
    Format: image
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-02
    Description: Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur globally. In mesocosm experiments, the single and combined impact of elevated seawater temperature and pCO2 (1,100 ppm) on the brown alga Fucus vesiculosus together with its ssociated community (epiphytes and mesograzers) was studied in four consecutive experiments (from April 2013 to April 2014). Based on these experiments, a numerical boxmodel simulating the seasonal growth of F. vesiculosus in the Kiel Outdoor Benthocosms (KOBs) was developed. Nitrogen and carbon cycling in the KOBs were considered and relevant physiological and ecological processes were implemented. To run simulations under present and global change scenarios (e.g. warming, ocean acidification) the model was forced with atmospheric and hydrographic data of the Kiel fjord. DIN and DIC concentration in the water and Fucus growth as carbon and nitrogen increase were explicitly modelled. For instance, the following processes were implemented: (1) Storage of carbon and nitrogen assimilates by Fucus, leading to a temporal decoupling of assimilation and growth. (2) Shading effects of epiphytes. (3) Grazing by Idotea, Gammarus and Littorina on both Fucus and epiphytes, but with species-specific rates and preferences. At present, the model is a suitable scientific tool capable of integrating our knowledge about macroalgal processes, their growth and productivity in coastal areas. It further facilitates the communication of complex knowledge to lay persons. Ultimately, the development of a predictive model, which can be coupled to a 3D-high resolution western Baltic Sea model, is anticipated. This will allow observations on the consequences of global change for the wellbeing and distribution of F. vesiculosus in the western Baltic Sea. Understanding responses of macroalgae and of the associated community is important because changing global temperatures and elevated CO2 may affect the ecological role of Fucus as primary producer, carbon sink, water purifier, and ecosystem engineer in the coastal ecosystem of the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Ecologists must understand how marine life responds to changing local conditions, rather than to overall global temperature rise, say Amanda E. Bates and 16 colleagues.
    Type: Article , PeerReviewed
    Format: text
    Format: audio
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: Habitat-forming species sustain biodiversity and ecosystem functioning in harsh environments through the amelioration of physical stress. Nonetheless, their role in shaping patterns of species distribution under future climate scenarios is generally overlooked. Focusing on coastal systems, we assess how habitat-forming species can influence the ability of stress-sensitive species to exhibit plastic responses, adapt to novel environmental conditions, or track suitable climates. Here, we argue that habitat-former populations could be managed as a nature-based solution against climate-driven loss of biodiversity. Drawing from different ecological and biological disciplines, we identify a series of actions to sustain the resilience of marine habitat-forming species to climate change, as well as their effectiveness and reliability in rescuing stress-sensitive species from increasingly adverse environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur at large scales. Numerous studies have shown the impact of single stressors on individual species. However, studies on the combined effect of multiple stressors on a multi-species assemblage, which is ecologically much more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the two factors warming and acidification in mesocosm experiments and studied their single and combined impact on the brown alga Fucus vesiculosus associated with its natural community (epiphytes and mesograzers) in the Baltic Sea in all seasons (from April 2013 to April 2014). We superimposed our treatment factors onto the natural fluctuations of all environmental variables present in the Benthocosms in so-called delta-treatments. Thereby we compared the physiological responses of F. vesiculosus (growth and metabolites) to the single and combined effects of natural Kiel Fjord temperatures and pCO2 conditions with a 5 °C temperature increase and/or pCO2 increase treatment (1100 ppm in the headspace above the mesocosms). Responses were also related to the factor photoperiod which changes over the course of the year. Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected growth of F. vesiculosus alone and/or interactively with warming. The response direction (additive, synergistic or antagonistic), however, depended on season and daylength. The effects were most obvious when plants were actively growing during spring and early summer. Our study revealed for the first time that it is crucial to always consider the impact of variable environmental conditions throughout all seasons. In summary, our study indicates that in future F. vesiculosus will be more affected by detrimental summer heat-waves than by ocean acidification although the latter consequently enhances growth throughout the year. The mainly negative influence of rising temperatures on the physiology of this keystone macroalga may alter and/or hamper its ecological functions in the shallow coastal ecosystem of the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 61 (3). pp. 1120-1133.
    Publication Date: 2019-02-01
    Description: Marine organisms in the Mediterranean Sea experience the highest temperatures, salinities and oligotrophic conditions in its easternmost part along the eastern shores of the Levantine basin. Over the past three decades this region has warmed by ca. 1.5–3.0°C with current winter and summer extremums of 17°C and 31°C, respectively. In this study, we tested the response of the native abundant articulated coralline red alga Ellisolandia elongata to this warming. Coralline algae play a key role in coastal ecosystems by structuring marine habitats, providing shelter for a myriad of species, and substantially influencing the coastal carbon budget. Despite being ubiquitous along the Levantine coasts, coralline's ecology, physiology, and biogeochemical role are nearly unknown as well as their performance under different temperatures. Measurements of primary production, respiration and calcification in the temperatures range 15–35°C, which represent past, present and predicted local annual conditions, indicated two physiological tipping points: 1) metabolic breakdown above 31°C; 2) metabolic shift at 23°C, possibly promoting seasonal algal heterotrichy (perennation of the alga without its fronds). Annual production rates were evaluated under the current and predicted temperature regimes indicating a loss of ca. one third of the organic carbon and carbonate production by corallines contributed to the shallow Levantine coast in the upcoming decades. We predict that with continued warming, Eastern Mediterranean corallines will experience a westward range contraction, initiating with phenological shifts, followed by performance declines and population decreases, ending with local extinctions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Description: Rapid adaptation to novel biotic interactions and abiotic factors in introduced ranges can be critical to invasion success of both exotic terrestrial and aquatic plants. Seaweeds are extremely successful biological invaders in marine environments. Along with herbivores, foulers − ubiquitous enemies in the marine environment − have the potential to determine the success or failure of invasive seaweeds. However, research on the topic of rapid adaptation of seaweeds to biotic challenges is still in its nascent stages and rapid adaptation of seaweeds to fouling is unexplored. We tested whether the impressive invasion success of the red macroalga Gracilaria vermiculophylla may be enhanced by the rapid adaptation of chemical control (defence) of new bacterial epibionts in the invaded range. The native and invasive G. vermiculophylla populations investigated were equally well defended against currently co-occurring bacterial epibionts isolated from their respective ranges. In contrast, the native populations were weakly defended against bacterial epibionts from the invaded range, whereas the invasive populations were weakly defended against bacterial epibionts from their native range. Apparently during the invasion process, invasive populations have adapted their control capacity to cope with the new epibionts but have lost the capacity to fend off old epibionts. Synthesis. These results provide the first evidence that a change in habitat and, thus, confrontation by new enemies, may trigger rapid defence adaptation of seaweeds, which could be necessary for invasiveness. Such adaptation dynamics as found in the current study could be also applicable to other types of host plant – enemy interaction e.g. plant root – microbe interactions, freshwater plant – fouler interactions in general and for cases of shifting plant – enemy interactions in course of climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-01
    Description: Perennial macroalgae within the genus Fucus are known to exude metabolites through their outer thallus surface. Some of these metabolites have pro- and/or antifouling properties. Seasonal fluctuations of natural fouling pressure and chemical fouling control strength against micro- and macrofoulers have previously been observed in Fucus, suggesting that control strength varies with threat. To date, a study on the seasonal composition of surface associated metabolites, responsible for much of the fouling control, has not been done. We sampled individuals of the two co-occurring species F. vesiculosus and F. serratus at monthly intervals (six per species and month) during a one-year field study. We analysed the chemical composition of surface associated metabolites of both Fucus species by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Additionally, we correlated abiotic and biotic parameters recorded monthly within the sampled habitat with the variation in the chemical surface landscape of Fucus. Our study revealed that the chemical surface composition of both Fucus species exhibits substantial seasonal differences between spring/summer and autumn/winter months. Light and temperature explained most of the seasonal variability in surface metabolite composition of both Fucus species. A strong summerly up-regulation of eighteen saccharides and two hydroxy acids in F. vesiculosus as well as of four fatty acids and two saccharides in F. serratus was observed. We discuss how these up-regulated molecules may have a complex effect on associated microfoulers, both promoting or decreasing fouling depending on metabolite and bacterial identity. These seasonal shifts in the surface metabolome seem to exert a compound control of density and composition of the Fucus associated biofilm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...