GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-08-29
    Description: Karst hydrosystems represent one of the largest global drinking water resources, but they are extremely vulnerable to pollution. Climate change, high population density, intensive industrial, and agricultural activities are the principal causes of deterioration, both in terms of quality and quantity, of these resources. Samples from 172 natural karst springs were collected in the whole territory of Greece. To identify any geogenic contamination and/or anthropogenic pollution, analyses of their chemical compositions, in terms of major ions and trace elements, were performed and compared to the EU limits for drinking water. Based on chloride content, the collected karst springs were divided into two groups: low-chloride (〈 100 mg L-1) and high-chloride content (〉 100 mg L-1). An additional group of springs with calcium-sulfate composition was recognised. Nitrate concentrations were always below the EU limit (50 mg L-1), although some springs presented elevated concentrations. High contents in terms of trace elements, such as B, Sr, As, and Pb, sometimes exceeding the limits, were rarely found. The Greek karst waters can still be considered a good quality resource both for human consumption and for agriculture. The main issues derive from seawater intrusion in the aquifers along the coasts. Moreover, the main anthropogenic pollutant is nitrate, found in higher concentrations mostly in the same coastal areas where human activities are concentrated. Finally, high levels of potentially harmful trace elements (e.g. As, Se) are very limited and of natural origin (geothermal activity, ore deposits, etc.).
    Description: Published
    Description: 11191
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Greece ; Hydrogeochemistry ; trace elements ; water quality ; karst springs ; 03.04. Chemical and biological
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-26
    Description: Samples of efflorescences and encrustations of hydrothermal origin were collected at Sousaki (Greece) and analysed for their mineralogical (XRD) and chemical composition. Solutions obtained both from mineralization with HNO3 and from leaching with deionised water were analysed for major (ICP-OES), minor and trace metals (ICP-MS) and sulfate contents (IC). Results evidence the dependence of the chemical and mineralogical composition on micro-environmental conditions i.e. humidity, oxygen-rich or -poor environment, exposed or sheltered from meteoric agents. In fact, the presence of highly soluble sulfate minerals with elevated contents of many metals (e.g. Mg, Al, Fe, Mn, Cr, Ni, etc.) further underscores the important influence of hydrothermal activity on elements' mobility, whilst the sometimes very high concentrations in toxic elements like Al, Cr, Ni suggest also possible environmental impacts.
    Description: Published
    Description: 107121
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Hydrothermal alteration products ; Sulfates ; Toxic metals ; Elements' mobility ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-29
    Description: The concentrations of trace elements in atmospheric bulk depositions (wet plus dry) were investigated from two highly industrialised areas of Sicily (southern Italy) from June 2018 to July 2019, in order to recognise the main natural and anthropogenic sources. A side objective of this study was to improve the common sampling procedures and analytical methods used for monitoring trace elements in atmospheric deposition. The trace element VWM (Volume-Weighted Mean) concentrations ranged from less than 0.01 µg L-1 for trace elements such as Cs, Tl, and U, up to 24 µg L-1 for minor elements (Al, Zn, Sr), in the filtered aliquot, while they reached concentrations up to 144 µg L-1 for the same elements, in the unfiltered aliquot. Therefore, significant differences in concentrations between these two aliquots were found, particularly for Al, Fe, Ti, Zn, Cr, Pb, Se, Cs, and U. This implies that filtering operations may produce a consistent underestimation of concentrations of certain ‘constituents’ of the atmospheric deposition. Natural (marine spray, local and regional geogenic input, volcanic emanations) and anthropogenic sources (industrial emissions, auto vehicular traffic, and diffuse background pollution) which influence rainwater chemistry were identified. Enrichment factors (EFs), with respect to the upper crust composition, provided clear evidence of the different sources above mentioned: Ti, Fe, Al, Cs, Cr, Rb, and Co have low EFs (〈1), and are referable to the (local and/or regional) geogenic input, while Se, Sb, Zn, B, Cd, Cu, Mo, Sr, As, with high EFs (〉10), highlight the influence of marine and/or industrial sources. The study produced a novel dataset on the atmospheric deposition rate of several trace elements, which had never been studied in the investigated areas. Finally, a comparison of trace element deposition rates in the studied areas with the atmospheric deposition reported for 53 different sites, belonging to 20 different European nations, was made. The comparison showed that some elements, such as Al, V, Zn, and Mo had higher median deposition fluxes in the Sicilian sites than in European monitoring sites.
    Description: Published
    Description: 737
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: atmospheric deposition ; rainwater ; industrial pollution ; trace elements ; anthropogenic contribution ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-08-29
    Description: Natural thermal and mineral waters are widely distributed along the Hellenic region and are related to the geodynamic regime of the country. The diverse lithological and tectonic settings they are found in reflect the great variability in their chemical and isotopic composition. The current study presents 276 (published and unpublished) trace element water data and discusses the sources and processes affecting the water by taking into consideration the framework of their geographic distribution. The dataset is divided in groups using temperature- and pH-related criteria. Results yield a wide range of concentrations, often related to the solubility properties of the individual elements and the factors impacting them (i.e. temperature, acidity, redox conditions and salinity). Many elements (e.g. alkalis, Ti, Sr, As and Tl) present a good correlation with temperature, which is in cases impacted by water rock interactions, while others (e.g. Be, Al, Cu, Se, Cd) exhibit either no relation or an inverse correlation with T possibly because they become oversaturated at higher temperatures in solid phases. A moderately constant inverse correlation is noticed for the vast majority of trace elements and pH, whereas no relationship between trace element concentrations and Eh was found. Seawater contamination and water-rock interaction seem to be the main natural processes that influence both salinity and elemental content. All in all, Greek thermomineral waters exceed occasionally the accepted limits representing in such cases serious harm to the environment and probably indirectly (through the water cycle) to human health.
    Description: Published
    Description: 78376–78393
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Greece ; Hydrogeochemistry ; Mineral waters ; Natural contaminants ; Trace elements ; Water-rock interaction ; Thermal waters ; 03.04. Chemical and biological
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-20
    Description: Volcanic lakes are complex natural systems and their chemical composition is related to a myriad of processes. The chemical composition of major, minor, Rare Earth Elements (REE) and physico-chemical parameters at the hyperacid crater lake of Rincón de la Vieja volcano (Costa Rica) are here investigated during February 2013–August 2014. The study of the lake chemical composition allows to identify the main geochemical processes occurring in the lake and to track the changes in the volcanic activity, both important for active volcanoes monitoring. The total REE concentration ( REE) dissolved in the crater lake varies from 2.7 to 3.6 mg kg−1 during the period of observation. REE in the water lake samples normalized to the average volcanic local rock (REEN-local rock) are depleted in light REE (LREE). On the contrary REEN-local rock in the solids precipitated (mainly gypsum/anhydrite), from lake water samples in laboratory at 22°C, are enriched in LREE. The low variability of (La/Pr)N-local rock and (LREE/ HREE)N-local rock ratios (0.92–1.07 and 0.66–0.81, respectively) in crater lake waters is consistent with the low phreatic activity (less than 10 phreatic eruptions in 2 years) observed during the period of observation. This period of low activity precedes the unrest started in 2015, thus, it could be considered as a pre-unrest, characterized by infrequent phreatic eruptions. No clear changes in the REE chemistry are associated with the phreatic eruption occurred at mid- 2013. The results obtained investigating water-rock interaction processes at theRincón de la Vieja crater lake show that rock dissolution and mineral precipitation/ dissolution are the main processes that control the variability of cations composition over time. In particular, precipitation and dissolution of gypsum and alunite are responsible for the variations of REE in the waters. Despite the low variations of (La/Pr)N-local rock and (LREE/HREE)N-local rock ratios, this study allows to suggest that REE can be used, together with major elements, as practical tracers of water-rock interaction processes and mineral precipitation/ dissolution at active hyperacid crater lakes over time, also during periods of quiescence and low phreatic activity.
    Description: Published
    Description: 1197568
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: Rare earth elements ; hyperacid crater lake ; geochemical monitoring ; sulfate minerals ; water-rock interaction
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-16
    Description: The Caviahue-Copahue Volcanic Complex is one of the most studied active volcanic systems in the South American Andean range, and yet little research has focused on trace and rare-earth elements of waters, especially during an eruptive cycle. In this study, we sampled and investigated natural waters from 23 sites (involving the crater lake, hot springs, streams, rivers, and bubbling pools) in two campaigns in 2017 and 2018, using physi cochemical parameters, major, trace and rare-earth elements concentrations. With this novel dataset, it was possible to identify, characterize and compare three groups of waters with distinctive hydrofacies. Indeed, the normalization of water compositions against host rock concentrations showed a particular trace element pattern for each group of waters. Although the absolute concentrations of the elements in each sampling site changed from 2017 to 2018, the normalized patterns did not. Boron, As, Cd, Tl, Se, and Te, commonly recognized as volatile, are the main trace elements that magmatic gases supply to the system headwaters, whereas elements such as Ca, K, and Ba are affected by precipitation of secondary minerals (gypsum, anhydrite, barite, jarosite, and alunite). Furthermore, the main river draining the summit volcano shows a steep decrease in As, Cr, and V concentrations correlated to the precipitation of Fe and Al hydroxysulfates (schwertmannite and basaluminite, respectively). Moreover, it is the first time that a comparison between the different water groups is made using the patterns of the rare-earth elements, allowing us to identify and separate depletion patterns due to dilution processes from those due to precipitation processes.
    Description: Published
    Description: 121602
    Description: JCR Journal
    Keywords: Copahue volcano ; Hydrological system ; Geothermal ; Trace elements ; Rare earth elements
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-29
    Description: Today, carbon dioxide removal from the atmosphere is the most ambitious challenge to mitigate climate changes. Basalt rocks are abundant on the Earth's surface (≈ 10%) and very abundant in the ocean floors and subaerial environments. Glassy matrix and minerals constituting these rocks contain metals (Ca2+, Mg2+, Fe2+) that can react with carbonic acid to form metal carbonates (CaCO3, MgO3 and FeCO3). Here, we present a data compilation of the chemical composition of waters circulating in basalt aquifers worldwide and the results of simple basalt-water-CO2 experiments. Induced or naturally occurring weathering of basalts rocks release elements in waters and elemental concentration is closely dependent on water CO2 concentration (and hence on water pH). We also performed two series of experiments where basaltic rock powder interacts with CO2-charged waters for one month at room temperature. Laboratory experiments evidenced that in the first stages of water-rock interaction, the high content of CO2 dissolved in water accelerates the basalt weathering process, releasing in the water not only elements that can form carbonate minerals but also other elements, which depending on their concentration can be essential or toxic for life. Relative mobility of elements such as Fe and Al, together with rare earth elements, increases at low pH conditions, while it decreases notably at neutral pH conditions. The comparison between experimental findings and natural evidence allowed to better understand the geochemical processes in basaltic aquifers hosted in active and inactive volcanic systems and to discuss these findings in light of the potential environmental impact of CO2 storage in mafic and ultramafic rocks.
    Description: Published
    Description: 4
    Description: JCR Journal
    Keywords: CO2 storage in mafic rocks; ; Element mobility in groundwaters; ; Rock-water-CO2 interaction processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...