GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2020
    In:  Geophysical Research Letters Vol. 47, No. 16 ( 2020-08-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 47, No. 16 ( 2020-08-28)
    Abstract: Summer low cloudiness separates into four distinct spatiotemporal sectors: oceanic, terrestrial highlands, coastal, and northern coastal modes Low cloudiness is strongest over the Pacific, where it peaks in midsummer; terrestrial and coastal areas peak in late summer Satellite records suggest a terrestrial highlands decline in low cloudiness over time, but airport records do not
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Physical Oceanography Vol. 50, No. 9 ( 2020-09-01), p. 2781-2796
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 50, No. 9 ( 2020-09-01), p. 2781-2796
    Abstract: A simple, isolated front is modeled using a turbulence resolving, large-eddy simulation (LES) to examine the generation of instabilities and inertial oscillations by surface fluxes. Both surface cooling and surface wind stress are considered. Coherent roll instabilities with 200–300-m horizontal scale form rapidly within the front after the onset of surface forcing. With weak surface cooling and no wind, the roll axis aligns with the front, yielding results that are equivalent to previous constant gradient symmetric instability cases. After ~1 day, the symmetric modes transform into baroclinic mixed modes with an off-axis orientation. Traditional baroclinic instability develops by day 2 and thereafter dominates the overall circulation. Addition of destabilizing wind forcing produces a similar behavior, but with off-axis symmetric-Ekman shear modes at the onset of instability. In all cases, imbalance of the geostrophic shear by vertical mixing leads to an inertial oscillation in the frontal currents. Analysis of the energy budget indicates an exchange between kinetic energy linked to the inertial currents and potential energy associated with restratification as the front oscillates in response to the vertically sheared inertial current. Inertial kinetic energy decreases from enhanced mixed layer turbulence dissipation and vertical propagation of inertial wave energy into the pycnocline.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Physical Oceanography Vol. 53, No. 8 ( 2023-08), p. 1887-1900
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 53, No. 8 ( 2023-08), p. 1887-1900
    Abstract: The observed development of deep mixed layers and the dependence of intense, deep-mixing events on wind and wave conditions are studied using an ocean LES model with and without an imposed Stokes-drift wave forcing. Model results are compared to glider measurements of the ocean vertical temperature, salinity, and turbulence kinetic energy (TKE) dissipation rate structure collected in the Icelandic Basin. Observed wind stress reached 0.8 N m −2 with significant wave height of 4–6 m, while boundary layer depths reached 180 m. We find that wave forcing, via the commonly used Stokes drift vortex force parameterization, is crucial for accurate prediction of boundary layer depth as characterized by measured and predicted TKE dissipation rate profiles. Analysis of the boundary layer kinetic energy (KE) budget using a modified total Lagrangian-mean energy equation, derived for the wave-averaged Boussinesq equations by requiring that the rotational inertial terms vanish identically as in the standard energy budget without Stokes forcing, suggests that wind work should be calculated using both the surface current and surface Stokes drift. A large percentage of total wind energy is transferred to model TKE via regular and Stokes drift shear production and dissipated. However, resonance by clockwise rotation of the winds can greatly enhance the generation of inertial current mean KE (MKE). Without resonance, TKE production is about 5 times greater than MKE generation, whereas with resonance this ratio decreases to roughly 2. The results have implications for the problem of estimating the global kinetic energy budget of the ocean.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biogeosciences, Copernicus GmbH, Vol. 18, No. 13 ( 2021-07-06), p. 4059-4072
    Abstract: Abstract. Interactions between wind and trees control energy exchanges between the atmosphere and forest canopies. This energy exchange can lead to the widespread damage of trees, and wind is a key disturbance agent in many of the world's forests. However, most research on this topic has focused on conifer plantations, where risk management is economically important, rather than broadleaf forests, which dominate the forest carbon cycle. This study brings together tree motion time-series data to systematically evaluate the factors influencing tree responses to wind loading, including data from both broadleaf and coniferous trees in forests and open environments. We found that the two most descriptive features of tree motion were (a) the fundamental frequency, which is a measure of the speed at which a tree sways and is strongly related to tree height, and (b) the slope of the power spectrum, which is related to the efficiency of energy transfer from wind to trees. Intriguingly, the slope of the power spectrum was found to remain constant from medium to high wind speeds for all trees in this study. This suggests that, contrary to some predictions, damping or amplification mechanisms do not change dramatically at high wind speeds, and therefore wind damage risk is related, relatively simply, to wind speed. Conifers from forests were distinct from broadleaves in terms of their response to wind loading. Specifically, the fundamental frequency of forest conifers was related to their size according to the cantilever beam model (i.e. vertically distributed mass), whereas broadleaves were better approximated by the simple pendulum model (i.e. dominated by the crown). Forest conifers also had a steeper slope of the power spectrum. We interpret these finding as being strongly related to tree architecture; i.e. conifers generally have a simple shape due to their apical dominance, whereas broadleaves exhibit a much wider range of architectures with more dominant crowns.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Atmospheric and Oceanic Technology Vol. 39, No. 7 ( 2022-07), p. 1053-1083
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 39, No. 7 ( 2022-07), p. 1053-1083
    Abstract: The Ka-band Radar Interferometer (KaRIn) on the Surface Water and Ocean Topography (SWOT) satellite will revolutionize satellite altimetry by measuring sea surface height (SSH) with unprecedented accuracy and resolution across two 50-km swaths separated by a 20-km gap. The original plan to provide an SSH product with a footprint diameter of 1 km has changed to providing two SSH data products with footprint diameters of 0.5 and 2 km. The swath-averaged standard deviations and wavenumber spectra of the uncorrelated measurement errors for these footprints are derived from the SWOT science requirements that are expressed in terms of the wavenumber spectrum of SSH after smoothing with a filter cutoff wavelength of 15 km. The availability of two-dimensional fields of SSH within the measurement swaths will provide the first spaceborne estimates of instantaneous surface velocity and vorticity through the geostrophic equations. The swath-averaged standard deviations of the noise in estimates of velocity and vorticity derived by propagation of the uncorrelated SSH measurement noise through the finite difference approximations of the derivatives are shown to be too large for the SWOT data products to be used directly in most applications, even for the coarsest footprint diameter of 2 km. It is shown from wavenumber spectra and maps constructed from simulated SWOT data that additional smoothing will be required for most applications of SWOT estimates of velocity and vorticity. Equations are presented for the swath-averaged standard deviations and wavenumber spectra of residual noise in SSH and geostrophically computed velocity and vorticity after isotropic two-dimensional smoothing for any user-defined smoother and filter cutoff wavelength of the smoothing.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...