GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (4)
  • 2000-2004  (20)
Document type
Keywords
Language
Years
Year
  • 1
    In: Science, Washington, DC : American Association for the Advancement of Science, 1880, 306(2004), 5700, Seite 1337, 1095-9203
    In: volume:306
    In: year:2004
    In: number:5700
    In: pages:1337
    Description / Table of Contents: Deep convection is the major mechanism for replenishing oxygen in the deep interior of the world ocean, and its variability affects the use of atmospheric oxygen to monitor the global carbon cycle. Sensors mounted on autonomous floats allow this episodic breathing of the ocean to be monitored in near real time. The results suggest that the tools are available now to make oxygen a key parameter in marine global change research.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1095-9203
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-22
    Description: Summary The major goal of the RV METEOR cruise M156 to Cape Verdian waters and the Mauritanian upwelling area off West Africa was to contribute to a better quantitative understanding of the effects of mesoscale eddies on CO2 source/sink mechanisms and the biological carbon pump in eastern boundary upwelling areas as well as their effects to the oligotrophic periphery including the deep-sea floor. The cruise M156 (MOSES Eddy Study I) was conducted within the framework of the BMBF funded REEBUS project (Role of Eddies in the Carbon Pump of Eastern Boundary Upwelling Systems) by a consortium of physical, biological (benthic microbiology, bacterial plankton, protists) and biogeochemical oceanographers. Specific aims were i. the quantification of solute and particle fluxes within and at the periphery of eddies; ii. to determine the turnover of carbon species, air-sea gas exchange of CO2, iii. the determination of the protistan and bacterial plankton community structures in the surface layers of an eddy, and iv. to quantify the magnitude and variability of material fluxes to the seabed and turnover in the sediment underneath the eddy passage. To achieve these aims, the cruise had two major observing strategies: i. an intense benthic/pelagic program along the zonal eddy passage at 18°N. Along this corridor ranging from 24°20’ to 16°30’W, five benthic/pelagic stations (E1 to E5) in different water depths and distances from the Mauritanian coast were performed. The motivation for this survey has been to resolve zonal gradients in pelagic element cycling as well as of organic matter degradation and burial in the seabed, which in turn could potentially be linked with changes in eddy induced primary- and export production. ii. the detailed investigation of an individual eddy to investigate physical, biogeochemical and biological processes on meso- to submeso-scales (100km to 10m). Satellite data analysis was performed before and during the cruise to identify a suitable eddy from a combination of sea-level anomaly, ocean color as Chl-a proxy, and sea-surface temperature supplemented with shipboard current velocity measurements. A total of 171 stations were sampled. The water column program consists of 59 CTD casts, 29 MSS and 20 Marine Snow Catcher deployments. For biogeochemical measurements at the sea surface two deployments of a Lagrangian Surface Drifter and one Waveglider deployment were conducted. At the seafloor, we conducted 10 BIGO deployments. Ten seafloor imaging surveys were performed using the towed camera system OFOS, supplemented with 7 Multibeam and 1 Sidescan surveys. In deviation from the cruise proposal, the planned long-term deployment of a Lander, which was planned to record a time series of oxygen fluxes during the passage of an eddy, was not deployed due to a major delay in its design and manufacturing. The planned AUV (Girona 500) deployments at the shallow E5 station close to the Mauritanian coast station did also not take place. Despite moderate weather conditions, all deployments were successful, hence all the data and sample material aimed for has been achieved. It is to expect that as planned all scientific questions can be addressed. Especially in the synthesis of all REEBUS cruises and the consideration of data from earlier cruises (MSM17/4, M107) into this region a high scientific potential can be expected.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 84 (21). pp. 197-204.
    Publication Date: 2017-02-14
    Description: Recent measurements and model studies have consistently identified a decreasing trend in the concentration of dissolved O2 in the ocean over the last several decades. This trend has important implications for our understanding of anthropogenic climate change. First, the observed oceanic oxygen changes may be a signal of the beginning of a reorganization of large-scale ocean circulation in response to anthropogenic radiative forcing. Second, the repartitioning of oxygen between the ocean and the atmosphere requires a revision of the current atmospheric carbon budget and the estimates of the terrestrial and oceanic carbon sinks as calculated by the Intergovernmental Panel on Climate Change (IPCC) from measurements of atmospheric O2/N2.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    DWD
    In:  Promet - Meteorologische Fortbildung, 28 (1/2). pp. 64-70.
    Publication Date: 2016-10-04
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 306 (5700). p. 1377.
    Publication Date: 2016-09-08
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-06-19
    Description: Cruise M160 is part of concerted MOSES/REEBUS Eddy Study featuring three major research expeditions (M156, M160, MSM104). It aims to develop both a qualitative and quantitative understanding of the role of physical-chemical-biological coupling in eddies for the biological pump. The study is part of the MOSES “Ocean Eddies” event chain, which follows three major hypotheses to be addressed by the MOSES/REEBUS field campaigns: (1) Mesoscale and sub-mesoscale eddies play an important role in transferring energy along the energy cascade from the large-scale circulation to dissipation at the molecular level. (2) Mesoscale and sub-mesoscale eddies are important drivers in determining onset, magnitude and characteristics of biological productivity in the ocean and contribute significantly to global primary production and particle export and transfer to the deep ocean. (3) Mesoscale and sub-mesoscale eddies are important for shaping extreme biogeochemical environments (e.g., pH, oxygen) in the oceans, thus acting as a source/sink function for greenhouse gases. In contrast to the other two legs, MOSES Eddy Study II during M160 did not include any benthic work but focused entirely on the pelagic dynamics within eddies. It accomplished a multi-disciplinary, multi-parameter and multi-platform study of two discrete cyclonic eddies in an unprecedented complexity. The pre-cruise search for discrete eddies suitable for detailed study during M160 had already started a few months prior to the cruise. Remote sensing data products (sea surface height, sea surface temperature, ocean color/chlorophyll a) were used in combination with eddy detection algorithms and numerical modelling to identify and track eddies in the entire eddy field off West Africa. In addition, 2 gliders and 1 waveglider had been set out from Mindelo/Cabo Verde for pre-cruise mapping of the potential working area north of the Cabo Verdean archipelago. At the start of M160, a few suitable eddies – mostly of cyclonic type – had been identified, some of which were outside the safe operation range of the motorglider plane. As technical problems delayed the flight operations, the first eddy (center at 14.5°N/25°W) for detailed study was chosen to the southwest of the island of Fogo. It was decided to carry out a first hydrographic survey there followed by the deployment of a suite of instruments (gliders, waveglider, floats, drifter short-term mooring). Such instrumented, we left this first eddy and transited – via a strong anticyclonic feature southwest of the island of Santiago – to the region northeast of the island of Sal, i.e. in the working range of the glider plane. During the transit, a full suite of underway measurements as well as CTD/RO section along 22°W (16°-18.5°N) were carried in search for sub-surface expressions of anticyclonic eddy features. In the northeast, we had identified the second strong cyclonic eddy (center at 18°N/22.5°W) which was chosen for detailed study starting with a complete hydrographic survey (ADCP, CTD/RO, other routine station work). After completion of the mesoscale work program, we identified a strong frontal region at the southwestern rim of the cyclonic eddy, which was chosen for the first sub-mesoscale study with aerial observation component. There, the first dye release experiment was carried out which consisted of the dye release itself followed by an intense multi-platforms study of the vertical and horizontal spreading of the initial dye streak. This work was METEOR-Berichte, Cruise M160, Mindelo – Mindelo, 23.11.2019 4 – 20.12.2019 supported and partly guided by aerial observation of the research motorglider Stemme, which was still somewhat compromised by technical issues and meteorological conditions (high cloud cover, Saharan dust event). Nevertheless, this first dye release experiment was successful and showed rapid movement of the dynamic meandering front. After completion of work on this second eddy and execution of a focused sampling program at the Cape Verde Ocean Observation, RV METEOR returned to the first eddy for continuation of the work started there in the beginning of the cruise. This was accompanied by a relocation of the airbase of Stemme from the international airport of Sal to the domestic airport of Fogo. The further execution of the eddy study at this first eddy, which again included a complete hydrographic survey followed by a mesoscale eddy study with dye release, was therefore possible with aerial observations providing important guidance for work on RV METEOR. Overall, M160 accomplished an extremely intense and complex work program with 212 instrument deployments during station work, 137 h of observation with towed instruments and a wide range of underway measurements throughout the cruise. Up to about 30 individually tracked platforms (Seadrones, glider, wavegliders, drifters, floats) were in the water at the same time providing unprecedented and orchestrated observation capabilities in an eddy. All planned work components were achieved and all working groups acquired the expected numbers of instrument deployments and sampling opportunities.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-09-19
    Description: During Meteor cruise 55 a strong undersaturation of surface seawater with respect to atmospheric CO2 was found in the Amazon River plume which is advected into the surface circulation of the tropical Atlantic. A conservative estimate of the plume-related CO2 sink in the tropical Atlantic yields a net air-sea flux of 0.014 ± 0.005 Pg C yr−1. The corresponding average CO2 flux density of 1.35 mmol m−2 d−1 is of similar magnitude but opposite sign as found elsewhere in the slightly supersaturated tropical Atlantic illustrating the significant impact of the Amazon on the biogeochemistry of large ocean areas. The dramatic change of the CO2 saturation state from highly supersaturated river waters to markedly undersaturated surface waters in the plume can be explained by a combination of the effects of CO2 outgassing from river water, of mixing between river and ocean water on the CO2 system properties, and of strong biological carbon drawdown in the plume.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-11-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 . pp. 1085-1088.
    Publication Date: 2018-02-20
    Description: Normalization to a constant salinity (S) is widely used for the adjustment of marine inorganic carbon chemistry data such as total alkalinity (AT) and total dissolved inorganic carbon (CT). This procedure traces back to the earliest studies in marine chemistry, but ignores the influence of riverine input of alkalinity and of dissolution of biogenic carbonates in the ocean. We tested different adjustment possibilities for AT and conclude that in most parts of the surface ocean the normalization concept does not reflect relationships which represent reality. In this paper, we propose a salinity adjustment based on a constant and region-specific term for S = 0, which expresses river run off, upwelling from below the lysocline, calcification, and lateral sea surface water exchange. One application of the normalization concept is its extension to AT and also CT predictions and implementation in models. We give a brief discussion on the usage of such extensions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 46 . pp. 964-970.
    Publication Date: 2014-01-30
    Description: Redfield ratios of remineralization are calculated based on chemical data analysis on isopycnal surfaces. The concentrations of dissolved inorganic carbon used in this study were corrected for the anthropogenic CO2 content as estimated with a back-calculation technique. The corrections increased the apparent carbon remineralization by 25-30%, thus proving important for the reliable estimation of Redfield carbon ratios in the presence of anthropogenic CO2. Best estimates from this study largely confirm the more recently published Redfield ratios of remineralization. The following results were obtained for the latitude range 3-41°N along 20-29°W in the Northeast Atlantic Ocean: Corg: P ratio = 123 ± 10; Corg : N ratio = 7.2 ± 0.8; -O2 :Corg ratio = 1.34 ± 0.06; -O2 : P ratio = 165 ± 15; N: P ratio = 17.5 ± 2.0. These ratios are in close agreement with the average composition of phytoplankton and represent respiration of organic matter consisting on average of 52% protein, 36% polysaccharide, and 12% lipid.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...