GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (19)
  • 2020-2022
  • 2010-2014  (19)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2023-03-14
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; BIOACID; Biological Impacts of Ocean Acidification; Calculated using CO2SYS; Carbon, total; Carbon, total, standard deviation; Carbon dioxide, partial pressure; Carbon dioxide, partial pressure, standard deviation; Colorimetry; DATE/TIME; Incubation duration; pH; pH, standard deviation; pH meter KNICK Model 761
    Type: Dataset
    Format: text/tab-separated-values, 120 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wannicke, Nicola; Endres, Sonja; Engel, Anja; Grossart, Hans-Peter; Unger, Juliane; Voss, Maren (2012): Response of Nodularia spumigena to pCO2 - Part 1: Growth, production and nitrogen cycling. Biogeosciences, 9(8), 2973-2988, https://doi.org/10.5194/bg-9-2973-2012
    Publication Date: 2023-05-12
    Description: Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 µatm), mid (median 353 µatm), and high (median 548 µatm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2) and 40 ± 25% (mid vs. high pCO2), as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schulz, Kai Georg; Bellerby, Richard G J; Brussaard, Corina P D; Büdenbender, Jan; Czerny, Jan; Engel, Anja; Fischer, Matthias; Krug, Sebastian; Lischka, Silke; Koch-Klavsen, Stephanie; Ludwig, Andrea; Meyerhöfer, Michael; Nondal, G; Silyakova, Anna; Stuhr, Annegret; Riebesell, Ulf (2013): Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences, 10(1), 161-180, https://doi.org/10.5194/bg-10-161-2013
    Publication Date: 2023-10-21
    Description: Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 matm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Piontek, Judith; Lunau, Mirko; Händel, Nicole; Borchard, Corinna; Wurst, Mascha; Engel, Anja (2010): Acidification increases microbial polysaccharide degradation in the ocean. Biogeosciences, 7(5), 1615-1625, https://doi.org/10.5194/bg-7-1615-2010
    Publication Date: 2023-11-15
    Description: With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular alpha- and beta-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to reduce carbon export and to enhance the respiratory CO2 production in the future ocean.
    Keywords: alpha-glucosidase activity per cell; Bacteria; Bacteria, abundance, standard deviation; beta-glucosidase activity per cell; Carbon, organic, particulate; Carbon, organic, particulate, standard deviation; Cell-specific glucosidase activity; Cell-specific glucosidase activity, standard deviation; Combined glucose loss; Combined glucose loss, standard deviation; Element analyser CNS, EURO EA; EPOCA; European Project on Ocean Acidification; Experimental treatment; FACSCalibur flow-cytometer (Becton Dickinson); High Performance anion-exchange chromatography; Light:Dark cycle; Measured; Particulate organic carbon loss; Particulate organic carbon loss, standard deviation; pH; Polysacchrides loss; Polysacchrides loss, standard deviation; Radiation, photosynthetically active; Sample ID; see reference(s); Temperature, water; Time, incubation; WTW 340i pH-analyzer and WTW SenTix 81-electrode
    Type: Dataset
    Format: text/tab-separated-values, 452 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  GEOMAR - Helmholtz Centre for Ocean Research Kiel | Supplement to: Engel, Anja; Piontek, Judith; Grossart, Hans-Peter; Riebesell, Ulf; Schulz, Kai Georg; Sperling, Martin (2014): Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms. Journal of Plankton Research, 36(3), 641-657, https://doi.org/10.1093/plankt/fbt125
    Publication Date: 2024-02-01
    Description: A mesocosm experiment was conducted to investigate the impact of rising fCO2 on the build-up and decline of organic matter during coastal phytoplankton blooms. Five mesocosms (~38 m³ each) were deployed in the Baltic Sea during spring (2009) and enriched with CO2 to yield a gradient of 355-862 µatm. Mesocosms were nutrient fertilized initially to induce phytoplankton bloom development. Changes in particulate and dissolved organic matter concentrations, including dissolved high-molecular weight (〉1 kDa) combined carbohydrates, dissolved free and combined amino acids as well as transparent exopolymer particles (TEP), were monitored over 21 days together with bacterial abundance, and hydrolytic extracellular enzyme activities. Overall, organic matter followed well-known bloom dynamics in all CO2 treatments alike. At high fCO2, higher dPOC:dPON during bloom rise, and higher TEP concentrations during bloom peak, suggested preferential accumulation of carbon-rich components. TEP concentration at bloom peak was significantly related to subsequent sedimentation of particulate organic matter. Bacterial abundance increased during the bloom and was highest at high fCO2. We conclude that increasing fCO2 supports production and exudation of carbon-rich components, enhancing particle aggregation and settling, but also providing substrate and attachment sites for bacteria. More labile organic carbon and higher bacterial abundance can increase rates of oxygen consumption and may intensify the already high risk of oxygen depletion in coastal seas in the future.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; SOPRAN; Surface Ocean Processes in the Anthropocene
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Galgani, Luisa; Engel, Anja (2013): Accumulation of Gel Particles in the Sea-Surface Microlayer during an Experimental Study with the Diatom Thalassiosira weissflogii. 04(01), 129-145, https://doi.org/10.4236/ijg.2013.41013
    Publication Date: 2024-02-01
    Description: Since the early 80's, the sea-surface microlayer (SML) has been hypothesized as being a gelatinous film. Recent studies have confirmed this characteristic, which confers properties that mediate mass and energy fluxes between ocean and atmosphere, including the emission of primary organic aerosols from marine systems. We investigated SML thickness and composition in five replicate indoor experiments between September and December 2010. During each experiment, the SML and underlying seawater were sampled from four seawater tanks: one served as control, and three were inoculated with Thalassiosira weissflogii grown in chemostats at 180, 380 and 780 ppm pCO2. We examined organic material enrichment factors in each tank, paying particular attention to gel particles accumulation such as polysaccharidic Transparent Exopolymer Particles (TEP) and the proteinaceous Coomassie Stainable Particles (CSP). While previous studies have observed carbohydrates and TEP enrichment in the microlayer, little is yet known about proteinaceous gel particles in the SML. Our experiments show that CSP dominate the gelatinous composition of the SML. We believe that the enrichment in CSP points to the importance of bacterial activity in the microlayer. Bacteria may play a pivotal role in mediating processes at the air-sea interface thanks to their exudates and protein content that can be released through cell disruption.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; SOPRAN; Surface Ocean Processes in the Anthropocene
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-08
    Keywords: Bacteria, abundance; Bacteria, abundance, standard deviation; BIOACID; Biological Impacts of Ocean Acidification; Carbon, organic, dissolved; Carbon, organic, dissolved, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Counting by flow cytometer; DATE/TIME; Fluorometry (TURNER, 10-AU-005); Nitrogen, inorganic, dissolved; Nitrogen, inorganic, dissolved, standard deviation; Nitrogen, organic, dissolved; Nitrogen, organic, standard deviation; Phosphate; Phosphate, standard deviation; Phosphorus, organic, dissolved; Phosphorus, organic, standard deviation; Spectrophotometer Hitachi U-2000; TOC analyzer (Shimadzu); Treatment
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-01
    Keywords: Arabinose; BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; EXP; Experiment; Fucose; Galactosamine; Galactose; Galacturonic acid; Galgani_etal_13; Gluconic acid; Glucosamine; Glucose; Glucuronic acid; Mannose; Muramic acid; Rhamnose; SOPRAN; Surface Ocean Processes in the Anthropocene; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 936 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-01
    Keywords: Bacteria, abundance; BIOACID; Biological Impacts of Ocean Acidification; Carbohydrates, total combined; Coomassie stainable particles; DATE/TIME; Equivalent spherical diameter; EXP; Experiment; Galgani_etal_13; Nitrogen, total; SOPRAN; Surface Ocean Processes in the Anthropocene; Thickness; Transparent exopolymer particles; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 460 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-01
    Keywords: Bacteria, abundance; BIOACID; Biological Impacts of Ocean Acidification; Carbohydrates, total combined; Coomassie stainable particles; DATE/TIME; Equivalent spherical diameter; EXP; Experiment; Galgani_etal_13; Nitrogen, total; SOPRAN; Surface Ocean Processes in the Anthropocene; Transparent exopolymer particles; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 402 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...