GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-14
    Description: The interdisciplinary exchange in climate engineering research offers a unique opportunity to make assumptions more explicit for such research projects. While making assumptions explicit is the standard in all disciplinary sciences, some assumptions in the context of societal challenges can only be usefully unveiled, discussed, and verified from the perspective of other research disciplines. Results from successful interdisciplinary collaborations are then more accessible and more generalizable to actors beyond the confines of the academic community. We aim to illustrate how interdisciplinary exchange helps to unveil assumptions in research endeavors and why this is important for successful interdisciplinary collaborations. We therefore follow different stages of the German Priority Program on Climate Engineering (SPP 1689), which we use as an example case of a successful interdisciplinary project. SPP 1689 focused on risks, challenges, and opportunities of Climate Engineering from the perspectives of numerous disciplines. Major results were that the initial assessments of technologies had to be sobered, the consideration of trade-offs is crucial for the potential assessment, and governance issues appeared larger than previously considered. From the reflections of SPP 1689, we conclude with three lessons learned: (1) The project profited from egalitarian organizational structures and communicative practices, preventing the predominance from single disciplines. (2) Within the project continuous efforts were undertaken to foster interdisciplinary understanding. In addition, the flexible project structure allowed for the accommodation of research needs arising as a result of these exchanges. (3) SPP 1689 offered early career researchers a platform for professional exchange on common challenges and best practices of being a part of an interdisciplinary research project.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Concordia University http://dx.doi.org/10.13039/501100002914
    Description: Simon Fraser University (CA)
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:304.28 ; Climate engineering ; Interdisciplinarity ; Assumptions ; Communication ; Carbon dioxide removal ; Radiation management
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  [Talk] In: EGU General Assembly 2021, 19.-30.03.2021, Online .
    Publication Date: 2021-07-07
    Description: Article 4 of the Paris Agreement calls for a “balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century”. It is not made explicit if this balance should be achieved for each of the greenhouse gases (GHGs) individually or if some sum of all GHGs is supposed to become net-zero. This confusion translated into several declared climate targets, that range from carbon-neutral, over GHG-neutral to climate-neutral, and sometimes use these terms interchangingly. However, these targets imply different trajectories in terms of single GHG emissions and result in vastly different temperature trajectories. Here, we show the implications of this confusion concerning declared climate target metrics, using the most commonly used metric of CO2-equivalent emissions. The same trajectory of net-zero-2050 CO2-equivalent emissions, shows vast differences in short term and long-term temperature and carbon cycle responses, depending on the distribution of CO2-equivalent emissions across the different GHGs. We emphasize that achieving net zero CO2 emissions remains a necessary precondition for long-term temperature stabilization. We also show that methane emissions reduction can have large short term benefits, as it would strongly reduce the short term temperature and thereby increase the natural carbon uptake. Going forward we recommend to aim for more transparency in declared climate goals and suggest aiming to achieve net zero anthropogenic emissions for all GHGs individually.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  [Talk] In: EGU General Assembly 2020, 03.05.-08.05.2020, Online .
    Publication Date: 2021-07-07
    Description: Estimates of the 1.5°C carbon budget vary widely among recent studies. One key contribution to this range is the non-CO2 climate forcing scenario uncertainty. Based on a partitioning of historical non-CO2 forcing, we show that there is currently a net negative non-CO2 forcing from fossil fuel combustion (FFC) mainly due to the co-emission of aerosols, and a net positive non-CO2 climate forcing from land-use change (LUC) and agricultural activities. We then perform a set of future simulations in which we prescribed a 1.5°C temperature stabilization trajectory, and diagnosed the resulting 1.5°C carbon budgets. Using the results of our historical partitioning, we prescribed changing non-CO2 forcing scenarios that are consistent with our model’s simulated decrease in FFC CO2 emissions. We compared the diagnosed carbon budgets from these idealized scenarios to those resulting from the default RCP scenario non-CO2 forcing, as well as from a scenario in which we assumed proportionality between future CO2 and non-CO2 forcing. We find a large range of carbon budget estimates across scenarios, with the largest budget emerging from the scenario with assumed proportionality of CO2 and non-CO2 forcing. Furthermore, our adjusted-RCP scenarios, in which the non-CO2 forcing is consistent with model-diagnosed FFC CO2 emissions, produced carbon budgets that are smaller than the corresponding default RCP scenarios. Our results suggest that ambitious mitigation scenarios will likely be characterized by an increasing contribution of non-CO2 forcing, and that an assumption of continued proportionality between CO2 and non-CO2 forcing would lead to an overestimate of the remaining carbon budget required to avoid low-temperature targets. Maintaining such proportionality under ambitious fossil fuel mitigation would require mitigation of non-CO2 emissions from agriculture and other non-FFC sources at a rate that is substantially faster than is found in the standard RCP scenarios.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Talk] In: Seminar at Centre for Climate System Modelling, ETH Zuerich, 05.2021, Online .
    Publication Date: 2021-07-08
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-08
    Description: Net-Zero-2050 aims for a national roadmap for net-zero CO2 emissions by 2050, including integrated scenario analyses and negative emission technology assessment. The aim of this project briefing is to clarify the overall carbon budget available for Germany to comply with the global long-term temperature limit of well below 2°C of the Paris Agreement.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: One key contribution to the wide range of 1.5 degrees C carbon budgets among recent studies is the non-CO2 climate forcing scenario uncertainty. Based on a partitioning of historical non-CO2 forcing, we show that currently there is a net negative non-CO2 forcing from fossil fuel combustion (FFC), and a net positive non-CO2 climate forcing from land-use change (LUC) and agricultural activities. We perform a set of future simulations in which we prescribed a 1.5 degrees C temperature stabilisation trajectory, and diagnosed the resulting 1.5 degrees C carbon budgets. Using the historical partitioning, we then prescribed adjusted non-CO2 forcing scenarios consistent with our model's simulated decrease in FFC CO2 emissions. We compared the diagnosed carbon budgets from these adjusted scenarios to those resulting from the default RCP scenario's non-CO2 forcing, and to a scenario in which proportionality between future CO2 and non-CO2 forcing is assumed. We find a wide range of carbon budget estimates across scenarios, with the largest budget emerging from the scenario with assumed proportionality of CO2 and non-CO2 forcing. Furthermore, our adjusted-RCP scenarios produce carbon budgets that are smaller than the corresponding default RCP scenarios. Our results suggest that ambitious mitigation scenarios will likely be characterised by an increasing contribution of non-CO2 forcing, and that an assumption of continued proportionality between CO2 and non-CO2 forcing would lead to an overestimate of the remaining carbon budget. Maintaining such proportionality under ambitious fossil fuel mitigation would require mitigation of non-CO2 emissions at a rate that is substantially faster than found in the standard RCP scenarios.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The interdisciplinary exchange in climate engineering research offers a unique opportunity to make assumptions more explicit for such research projects. While making assumptions explicit is the standard in all disciplinary sciences, some assumptions in the context of societal challenges can only be usefully unveiled, discussed, and verified from the perspective of other research disciplines. Results from successful interdisciplinary collaborations are then more accessible and more generalizable to actors beyond the confines of the academic community. We aim to illustrate how interdisciplinary exchange helps to unveil assumptions in research endeavors and why this is important for successful interdisciplinary collaborations. We therefore follow different stages of the German Priority Program on Climate Engineering (SPP 1689), which we use as an example case of a successful interdisciplinary project. SPP 1689 focused on risks, challenges, and opportunities of Climate Engineering from the perspectives of numerous disciplines. Major results were that the initial assessments of technologies had to be sobered, the consideration of trade-offs is crucial for the potential assessment, and governance issues appeared larger than previously considered. From the reflections of SPP 1689, we conclude with three lessons learned: (1) The project profited from egalitarian organizational structures and communicative practices, preventing the predominance from single disciplines. (2) Within the project continuous efforts were undertaken to foster interdisciplinary understanding. In addition, the flexible project structure allowed for the accommodation of research needs arising as a result of these exchanges. (3) SPP 1689 offered early career researchers a platform for professional exchange on common challenges and best practices of being a part of an interdisciplinary research project.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: The Zero Emissions Commitment (ZEC) is the change in global mean temperature expected to occur following the cessation of net CO2 emissions and as such is a critical parameter for calculating the remaining carbon budget. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) was established to gain a better understanding of the potential magnitude and sign of ZEC, in addition to the processes that underlie this metric. A total of 18 Earth system models of both full and intermediate complexity participated in ZECMIP. All models conducted an experiment where atmospheric CO2 concentration increases exponentially until 1000 PgC has been emitted. Thereafter emissions are set to zero and models are configured to allow free evolution of atmospheric CO2 concentration. Many models conducted additional second-priority simulations with different cumulative emission totals and an alternative idealized emissions pathway with a gradual transition to zero emissions. The inter-model range of ZEC 50 years after emissions cease for the 1000 PgC experiment is −0.36 to 0.29 ∘C, with a model ensemble mean of −0.07 ∘C, median of −0.05 ∘C, and standard deviation of 0.19 ∘C. Models exhibit a wide variety of behaviours after emissions cease, with some models continuing to warm for decades to millennia and others cooling substantially. Analysis shows that both the carbon uptake by the ocean and the terrestrial biosphere are important for counteracting the warming effect from the reduction in ocean heat uptake in the decades after emissions cease. This warming effect is difficult to constrain due to high uncertainty in the efficacy of ocean heat uptake. Overall, the most likely value of ZEC on multi-decadal timescales is close to zero, consistent with previous model experiments and simple theory.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: The remaining carbon budget represents the total amount of CO2 that can still be emitted in the future while limiting global warming to a given temperature target. Remaining carbon budget estimates range widely, however, and this uncertainty can be used to either trivialize the most ambitious mitigation targets by characterizing them as impossible, or to argue that there is ample time to allow for a gradual transition to a low-carbon economy. Neither of these extremes is consistent with our best understanding of the policy implications of remaining carbon budgets. Understanding the scientific and socio-economic uncertainties affecting the size of the remaining carbon budgets, as well as the methodological choices and assumptions that underlie their calculation, is essential before applying them as a policy tool. Here we provide recommendations on how to calculate remaining carbon budgets in a traceable and transparent way, and discuss their uncertainties and implications for both international and national climate policies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-05
    Description: In diesem Beitrag werden die verschiedenen Methoden der Kohlendioxid Entnahme (Carbon Dioxide Removal, CDR) beschrieben, deren technologische Bereitstellung überprüft und Potenzial, Kosten und Nebenwirkungen anhand der neuesten Literatur diskutiert. Die Methoden werden darin unterschieden, ob sie Kohlenstoff durch chemische oder biologische Prozesse aus der Atmosphäre entnehmen, und ob sie diesen dann an Land, im Ozean oder in Gesteinsformationen speichern. Summary In this chapter different Carbon Dioxide Removal (CDR) methods are described. Based on the most recent literature, their respective tech readiness, potential, cost and side effects are discussed. The methods are distinct by their carbon uptake methodology, either through chemical or biological processes, as well as by the choice of storage location, either on land, in the ocean or in geological storage facilities.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...