GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2020
    In:  Geophysical Research Letters Vol. 47, No. 16 ( 2020-08-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 47, No. 16 ( 2020-08-28)
    Abstract: Summer low cloudiness separates into four distinct spatiotemporal sectors: oceanic, terrestrial highlands, coastal, and northern coastal modes Low cloudiness is strongest over the Pacific, where it peaks in midsummer; terrestrial and coastal areas peak in late summer Satellite records suggest a terrestrial highlands decline in low cloudiness over time, but airport records do not
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecosphere, Wiley, Vol. 13, No. 6 ( 2022-06)
    Abstract: Wildfires devastated communities in Oregon and Washington in September 2020, burning almost as much forest west of the Cascade Mountain crest (“the westside”) in 2 weeks (~340,000 ha) as in the previous five decades (~406,00 ha). Unlike dry forests of the interior western United States, temperate rain forests of the Pacific Northwest have experienced limited recent fire activity, and debates surrounding what drove the 2020 fires, and management strategies to adapt to similar future events, necessitate a scientific evaluation of the fires. We evaluate five questions regarding the 2020 Labor Day fires: (1) How do the 2020 fires compare with historical fires? (2) How did the roles of weather and antecedent climate differ geographically and from the recent past (1979–2019)? (3) How do fire size and severity compare to other recent fires (1985–2019), and how did forest management and prefire forest structure influence burn severity? (4) What impact will these fires have on westside landscapes? and (5) How can we adapt to similar fires in the future? Although 5 of the 2020 fires were much larger than any others in the recent past and burned ~10 times the area in high‐severity patches 〉 10,000 ha, the 2020 fires were remarkably consistent with historical fires. Reports from the early 1900s, along with paleo‐ and dendro‐ecological records, indicate similar and potentially even larger wildfires over the past millennium, many of which shared similar seasonality (late August/early September), weather conditions, and even geographic locations. Consistent with the largest historical fires, strong east winds and anomalously dry conditions drove the rapid spread of high‐severity wildfire in 2020. We found minimal difference in burn severity among stand structural types related to previous management in the 2020 fires. Adaptation strategies for similar fires in the future could benefit by focusing on ignition prevention, fire suppression, and community preparedness, as opposed to fuel treatments that are unlikely to mitigate fire severity during extreme weather. While scientific uncertainties remain regarding the nature of infrequent, high‐severity fires in westside forests, particularly under climate change, adapting to their future occurrence will require different strategies than those in interior, dry forests.
    Type of Medium: Online Resource
    ISSN: 2150-8925 , 2150-8925
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2572257-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Natural Hazards Vol. 107, No. 1 ( 2021-05), p. 911-935
    In: Natural Hazards, Springer Science and Business Media LLC, Vol. 107, No. 1 ( 2021-05), p. 911-935
    Type of Medium: Online Resource
    ISSN: 0921-030X , 1573-0840
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2017806-2
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Heliyon, Elsevier BV, Vol. 6, No. 6 ( 2020-06), p. e04159-
    Type of Medium: Online Resource
    ISSN: 2405-8440
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2835763-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Fire Ecology, Springer Science and Business Media LLC, Vol. 19, No. 1 ( 2023-04-03)
    Abstract: Los incendios de vegetación constituyen uno de los mayores problemas que afectan a las personas y los recursos naturales del sur de California, y la proyección de que el calentamiento del clima podría llevar a mayores probabilidades de incendios en el futuro es motivo de preocupación. Sin embargo, la conexión del cambio climático con la probabilidad esperada de incendios a futuro es compleja. Mientras que la mayoría de los modelos generalmente muestran temperaturas que se incrementan en el futuro, los cambios en la humedad y la temperatura son menos ciertos, y estos cambios interactúan para generar proyecciones de climas futuros que son algunas veces, aunque no siempre, más conducentes a fuegos de vegetación. Nosotros hicimos correr el FSim, un modelo de propagación del fuego estocástico y de resolución espacial (270 m) y temporal (diario), con un Componente Proyectado de Liberación de Energía (ERC por sus siglas en inglés), derivado de múltiples modelos del clima global (GCMs) bajo el escenario de cambio climático RCP8.5. Esto fue hecho para explorar el impacto de un rango de futuras trayectorias del clima en probabilidades de fuegos simulados y para cuantificar la incertidumbre que proviene de múltiples GCMs. Resultados Observamos una gran incertidumbre en la futura dirección del cambio en la probabilidad de ocurrencia de incendios. Los cambios futuros fueron más seguros en la región de la costa sur de California, en donde el 75% de las simulaciones proyectaron un incremento en la probabilidad de incendios. En la región de la costa central, cinco de un total de ocho simulaciones basadas en GCMs proyectaron un incremento en la probabilidad de incendios. Menos del 1% del total del área de estudio con probabilidad de quemarse presentó un acuerdo unánime en la dirección de los cambios proyectados. Los cambios simulados en la probabilidad de incendios estuvieron directamente correlacionados a las proyecciones anuales de cambios en ERC, pero estuvieron también afectados por la estacionalidad del cambio ERC, como también en las interacciones entre humedad, precipitación y temperatura. Conclusiones La variabilidad observada permite conocer el porqué, y bajo qué condiciones de clima, las probabilidades de incendio pueden aumentar o disminuir en el futuro. Nuestro estudio es novedoso en la exploración dentro un rango amplio de proyecciones potenciales de futuras probabilidades de incendios para el sur de California, utilizando una aplicación regional de un modelo de propagación del fuego estocástico y de alta resolución. La complejidad que nosotros demostramos para el sur de California sugiere que las correlaciones simples del incremento del fuego con el aumento de las temperaturas están probablemente subestimando el rango de posibles escenarios de fuego futuros.
    Type of Medium: Online Resource
    ISSN: 1933-9747
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2575363-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2024
    In:  Journal of Geophysical Research: Biogeosciences Vol. 129, No. 2 ( 2024-02)
    In: Journal of Geophysical Research: Biogeosciences, American Geophysical Union (AGU), Vol. 129, No. 2 ( 2024-02)
    Abstract: Climate change may drive shifts to fire regimes with more frequent and larger fires in the moist temperate forests of the Pacific Northwest Describing uncertainties of how, when, and where climate change may alter fire regimes helps bracket expectations for the future The largest increases to burn probability, fire size, and number of fires are projected to occur in the cooler, wetter parts of the region
    Type of Medium: Online Resource
    ISSN: 2169-8953 , 2169-8961
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2024
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...