GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 10152-10161 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Results from nonequilibrium molecular-dynamics simulations of collisional energy transfer from vibrationally highly excited azulene in compressed CO2 are compared with experimental results from our laboratory obtained under comparable physical conditions. As observed in the experiment, the cooling rates show a purely monoexponential decay of the excess energy. The influence of the microscopic solvent shell structure on these processes is investigated using the full three-dimensional anisotropic CO2 structure around azulene obtained from the simulation. The analysis shows that local heating effects of any kind do not play a role in our model system. Predictions of the pressure dependence of the energy transfer rates by the isolated binary collision model are compared with results from the simulations using two different definitions of the collision frequency in dense fluids. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...